IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p583-d313448.html
   My bibliography  Save this article

Equivalent Two Switches and Single Switch Buck/Buck-Boost Circuits for Solar Energy Harvesting Systems

Author

Listed:
  • Ehsan Jamshidpour

    (ECAM Strasbourg Europe-ICube Laboratory (UMR7357), F-67400 Illkirch-Graffenstaden, France)

  • Slavisa Jovanovic

    (Institut Jean Lamour (UMR7198), Université de Lorraine, 54011 Nancy, France)

  • Philippe Poure

    (Institut Jean Lamour (UMR7198), Université de Lorraine, 54011 Nancy, France)

Abstract

In this paper, a comparative analysis has been presented of two equivalent circuits of non-isolated buck/buck-boost converters under synchronous control, used in a stand-alone Photovoltaic-battery-load system. The first circuit consists of two cascaded buck and buck-boost classical converters with two controllable switches. The buck converter is used to extract the maximum power of the Photovoltaic source, and the buck-boost converter is applied for the output voltage level control. The second circuit consists of a proposed converter with a single controllable switch. In both cases, the switching frequency is used to track the maximum power point and the duty ratio controls the output voltage level. Selected simulation results and experimental tests confirm that the two conversion circuits have identical behavior under synchronous control. This study shows that the single switch converter has a lower size and cost, but it is limited in the possible control strategy.

Suggested Citation

  • Ehsan Jamshidpour & Slavisa Jovanovic & Philippe Poure, 2020. "Equivalent Two Switches and Single Switch Buck/Buck-Boost Circuits for Solar Energy Harvesting Systems," Energies, MDPI, vol. 13(3), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:583-:d:313448
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/583/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/583/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taghvaee, M.H. & Radzi, M.A.M. & Moosavain, S.M. & Hizam, Hashim & Hamiruce Marhaban, M., 2013. "A current and future study on non-isolated DC–DC converters for photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 216-227.
    2. Hyeon-Seok Lee & Jae-Jung Yun, 2019. "Advanced MPPT Algorithm for Distributed Photovoltaic Systems," Energies, MDPI, vol. 12(18), pages 1-17, September.
    3. Santiago Pindado & Javier Cubas & Elena Roibás-Millán & Francisco Bugallo-Siegel & Félix Sorribes-Palmer, 2018. "Assessment of Explicit Models for Different Photovoltaic Technologies," Energies, MDPI, vol. 11(6), pages 1-22, May.
    4. Yuan-Chih Chang & Hao-Chin Chang & Chien-Yu Huang, 2018. "Design and Implementation of the Battery Energy Storage System in DC Micro-Grid Systems," Energies, MDPI, vol. 11(6), pages 1-8, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaocong Li & Xin Chen, 2021. "A Multi-Index Feedback Linearization Control for a Buck-Boost Converter," Energies, MDPI, vol. 14(5), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Nan & Lv, Yanling & Zhang, Yuchen & Zhu, Xianhui, 2023. "Linear fitting Rule of I–V characteristics of thin-film cells based on Bezier function," Energy, Elsevier, vol. 278(PB).
    2. Zhang, Chao & Wei, Yi-Li & Cao, Peng-Fei & Lin, Meng-Chang, 2018. "Energy storage system: Current studies on batteries and power condition system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3091-3106.
    3. Sivakumar, S. & Sathik, M. Jagabar & Manoj, P.S. & Sundararajan, G., 2016. "An assessment on performance of DC–DC converters for renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1475-1485.
    4. Dixon, Christopher & Reynolds, Steve & Rodley, David, 2016. "Micro/small wind turbine power control for electrolysis applications," Renewable Energy, Elsevier, vol. 87(P1), pages 182-192.
    5. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    6. Rehman, Zubair & Al-Bahadly, Ibrahim & Mukhopadhyay, Subhas, 2015. "Multiinput DC–DC converters in renewable energy applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 521-539.
    7. Başoğlu, Mustafa Engin & Çakır, Bekir, 2016. "Comparisons of MPPT performances of isolated and non-isolated DC–DC converters by using a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1100-1113.
    8. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    9. Marcin Walczak & Leszek Bychto, 2023. "Transients in Input and Output Signals in DC–DC Converters Working in Maximum Power Point Tracking Systems," Energies, MDPI, vol. 16(12), pages 1-12, June.
    10. Colak, Ilhami & Kabalci, Ersan & Fulli, Gianluca & Lazarou, Stavros, 2015. "A survey on the contributions of power electronics to smart grid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 562-579.
    11. Efrain Mendez & Alexandro Ortiz & Pedro Ponce & Israel Macias & David Balderas & Arturo Molina, 2020. "Improved MPPT Algorithm for Photovoltaic Systems Based on the Earthquake Optimization Algorithm," Energies, MDPI, vol. 13(12), pages 1-24, June.
    12. Moacyr A. G. de Brito & Victor A. Prado & Edson A. Batista & Marcos G. Alves & Carlos A. Canesin, 2021. "Design Procedure to Convert a Maximum Power Point Tracking Algorithm into a Loop Control System," Energies, MDPI, vol. 14(15), pages 1-17, July.
    13. Sajid Sarwar & Muhammad Yaqoob Javed & Mujtaba Hussain Jaffery & Muhammad Saqib Ashraf & Muhammad Talha Naveed & Muhammad Annas Hafeez, 2022. "Modular Level Power Electronics (MLPE) Based Distributed PV System for Partial Shaded Conditions," Energies, MDPI, vol. 15(13), pages 1-39, June.
    14. Miaomiao Ma & Xiangjie Liu & Kwang Y. Lee, 2020. "Maximum Power Point Tracking and Voltage Regulation of Two-Stage Grid-Tied PV System Based on Model Predictive Control," Energies, MDPI, vol. 13(6), pages 1-16, March.
    15. Abdelilah Chalh & Aboubakr El Hammoumi & Saad Motahhir & Abdelaziz El Ghzizal & Umashankar Subramaniam & Aziz Derouich, 2020. "Trusted Simulation Using Proteus Model for a PV System: Test Case of an Improved HC MPPT Algorithm," Energies, MDPI, vol. 13(8), pages 1-12, April.
    16. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Topologies for large scale photovoltaic power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 309-319.
    17. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2017. "Comprehensive overview of grid interfaced solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 316-332.
    18. Boumaaraf, Houria & Talha, Abdelaziz & Bouhali, Omar, 2015. "A three-phase NPC grid-connected inverter for photovoltaic applications using neural network MPPT," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1171-1179.
    19. Burmester, Daniel & Rayudu, Ramesh & Seah, Winston & Akinyele, Daniel, 2017. "A review of nanogrid topologies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 760-775.
    20. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:583-:d:313448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.