IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1299-d1047134.html
   My bibliography  Save this article

An Efficient Variable Step Solar Maximum Power Point Tracking Algorithm

Author

Listed:
  • Yang Meng

    (School of Science (School of Chip Industry), Hubei University of Technology, Wuhan 430068, China
    National “111 Research Center” Microelectronics and Integrated Circuits, Hubei University of Technology, Wuhan 430068, China)

  • Zunliang Chen

    (School of Science (School of Chip Industry), Hubei University of Technology, Wuhan 430068, China
    National “111 Research Center” Microelectronics and Integrated Circuits, Hubei University of Technology, Wuhan 430068, China)

  • Hui Cheng

    (School of Foreign Languages, Hubei University of Technology, Wuhan 430068, China)

  • Enpu Wang

    (School of Science (School of Chip Industry), Hubei University of Technology, Wuhan 430068, China
    National “111 Research Center” Microelectronics and Integrated Circuits, Hubei University of Technology, Wuhan 430068, China)

  • Baohua Tan

    (School of Science (School of Chip Industry), Hubei University of Technology, Wuhan 430068, China
    National “111 Research Center” Microelectronics and Integrated Circuits, Hubei University of Technology, Wuhan 430068, China)

Abstract

The classic Photovoltaic system maximum power point tracking technique cannot concurrently take into account the dynamic response speed and steady-state accuracy when the light intensity changes. To address this issue, a new composite variable step MPPT control algorithm is developed in this study. Based on the three-stage variable step incremental conductance method, the algorithm adds the Kalman filtering algorithm to pre-process the photovoltaic cells output signal, and uses a new calculation approach to adjust the variable step coefficient. As a result, the perturbation step can be automatically modified according to changes in the external environment, which resolves the issues with poor dynamic reaction speed when the classic variable step algorithm started and the light changed. Compared to conventional MPPT control algorithms, the improved MPPT strategy can be easily realized using a hardware control system since it has a simplified control logic and requires less data to be calculated. In this study, the hardware circuit of the enhanced MPPT control algorithm is built using the ESP32 as the primary control chip. This chip can be utilized in conjunction with the Internet of Things to enable remote monitoring of the solar power system’s operational state. According to test results, the algorithm can instantly detect the maximum power point in all lighting circumstances with tracking accuracy of up to 99.6% and a reduction in dynamic response time of the system to 0.12 s.

Suggested Citation

  • Yang Meng & Zunliang Chen & Hui Cheng & Enpu Wang & Baohua Tan, 2023. "An Efficient Variable Step Solar Maximum Power Point Tracking Algorithm," Energies, MDPI, vol. 16(3), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1299-:d:1047134
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1299/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1299/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jin Zhang, 2021. "Response to Letter to the Editor: Zhang, J. (2021)," The American Statistician, Taylor & Francis Journals, vol. 75(4), pages 458-458, October.
    2. Tarek A. Boghdady & Yasmin E. Kotb & Abdullah Aljumah & Mahmoud M. Sayed, 2022. "Comparative Study of Optimal PV Array Configurations and MPPT under Partial Shading with Fast Dynamical Change of Hybrid Load," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
    3. Fathi Troudi & Houda Jouini & Abdelkader Mami & Nidhal Ben Khedher & Walid Aich & Attia Boudjemline & Mohamed Boujelbene, 2022. "Comparative Assessment between Five Control Techniques to Optimize the Maximum Power Point Tracking Procedure for PV Systems," Mathematics, MDPI, vol. 10(7), pages 1-15, March.
    4. Muhammad Mateen Afzal Awan & Muhammad Yaqoob Javed & Aamer Bilal Asghar & Krzysztof Ejsmont, 2022. "Performance Optimization of a Ten Check MPPT Algorithm for an Off-Grid Solar Photovoltaic System," Energies, MDPI, vol. 15(6), pages 1-31, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sajid Sarwar & Muhammad Yaqoob Javed & Mujtaba Hussain Jaffery & Muhammad Saqib Ashraf & Muhammad Talha Naveed & Muhammad Annas Hafeez, 2022. "Modular Level Power Electronics (MLPE) Based Distributed PV System for Partial Shaded Conditions," Energies, MDPI, vol. 15(13), pages 1-39, June.
    2. Simbarashe Jombo & Mohamed A. M. Abd Elbasit & Anesu D. Gumbo & Nthaduleni S. Nethengwe, 2023. "Remote Sensing Application in Mountainous Environments: A Bibliographic Analysis," IJERPH, MDPI, vol. 20(4), pages 1-17, February.
    3. Alexandro Ortiz & Efrain Mendez & Israel Macias & Arturo Molina, 2022. "Earthquake Algorithm-Based Voltage Referenced MPPT Implementation through a Standardized Validation Frame," Energies, MDPI, vol. 15(23), pages 1-24, November.
    4. Eneko Artetxe & Jokin Uralde & Oscar Barambones & Isidro Calvo & Imanol Martin, 2023. "Maximum Power Point Tracker Controller for Solar Photovoltaic Based on Reinforcement Learning Agent with a Digital Twin," Mathematics, MDPI, vol. 11(9), pages 1-21, May.
    5. Muhammad Mateen Afzal Awan & Aamer Bilal Asghar & Muhammad Yaqoob Javed & Zsolt Conka, 2023. "Ordering Technique for the Maximum Power Point Tracking of an Islanded Solar Photovoltaic System," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    6. Nicolai Lystbæk & Mikkel Gregersen & Hamid Reza Shaker, 2023. "Review of Energy Portfolio Optimization in Energy Markets Considering Flexibility of Power-to-X," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    7. Danqing Song & Wanpeng Shi & Chengwen Wang & Lihu Dong & Xin He & Enge Wu & Jianjun Zhao & Runhu Lu, 2023. "Numerical Investigation of a Local Precise Reinforcement Method for Dynamic Stability of Rock Slope under Earthquakes Using Continuum–Discontinuum Element Method," Sustainability, MDPI, vol. 15(3), pages 1-24, January.
    8. Hesham Alhumade & Essam H. Houssein & Hegazy Rezk & Iqbal Ahmed Moujdin & Saad Al-Shahrani, 2023. "Modified Artificial Hummingbird Algorithm-Based Single-Sensor Global MPPT for Photovoltaic Systems," Mathematics, MDPI, vol. 11(4), pages 1-25, February.
    9. Zixia Yuan & Guojiang Xiong & Xiaofan Fu, 2022. "Artificial Neural Network for Fault Diagnosis of Solar Photovoltaic Systems: A Survey," Energies, MDPI, vol. 15(22), pages 1-18, November.
    10. Ernesto Bárcenas-Bárcenas & Diego R. Espinoza-Trejo & José A. Pecina-Sánchez & Héctor A. Álvarez-Macías & Isaac Compeán-Martínez & Ángel A. Vértiz-Hernández, 2023. "An improved Fractional MPPT Method by Using a Small Circle Approximation of the P–V Characteristic Curve," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    11. Prasannaa Poongavanam & Aneesh A. Chand & Van Ba Tai & Yash Munnalal Gupta & Madhan Kuppusamy & Joshuva Arockia Dhanraj & Karthikeyan Velmurugan & Rajasekar Rajagopal & Tholkappiyan Ramachandran & Kus, 2023. "Annual Thermal Management of the Photovoltaic Module to Enhance Electrical Power and Efficiency Using Heat Batteries," Energies, MDPI, vol. 16(10), pages 1-18, May.
    12. Shuhui Yu & Ya Yang & Jiamin Li & Keyu Guo & Zeyu Wang & Yuwei Liu, 2024. "Exploring low-carbon and sustainable urban transformation design using ChatGPT and artificial bee colony algorithm," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1299-:d:1047134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.