IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v170y2023ics0965856423000356.html
   My bibliography  Save this article

A novel modelling approach of integrated taxi and transit mode and route choice using city-scale emerging mobility data

Author

Listed:
  • Mepparambath, Rakhi Manohar
  • Soh, Yong Sheng
  • Jayaraman, Vasundhara
  • Tan, Hong En
  • Ramli, Muhamad Azfar

Abstract

The modelling of mode and route choices of public transport passengers is an essential component of travel demand modelling and transportation planning. Traditionally, choice models are trained using data from revealed and stated preference surveys which are not only cost and time intensive but also suffer from bias due to limitations in sample size. In this article, we present a novel approach utilizing a combination of emerging data sources for non-private modes, namely public transit smart card data, taxi GPS trajectory data, and taxi trips transaction data in order to calibrate an integrated taxi and transit mode and route choice model. We apply our approach for a case study of the taxi and public transport system of Singapore using data sets obtained from the local transport authorities. We solve the first mile and last mile data gaps by overlaying the individual transport nodes against geospatial land use data in order to identify their actual origin and destination points of each journey. To model the behavioural inter-dependencies between the choice of taxi and transit options, we tested a two-level nested logit model and a cross-nested logit model. Along with the commonly included exploratory variables such as in-vehicle travel time, transfer time and number of transfers, our model also incorporates differences in travel cost and separate mode specific constants for peak and off-peak periods. Generic and mode-specific in-vehicle travel time and cost coefficients are tested in the utility functions for the transit and taxi alternatives. Willingness to pay estimates are calculated and compared against similar estimates from Singapore. We also present an application of the model by predicting the mode split between taxi and transit under selected transit and taxi fare change scenarios. Our modelling methodology is highly generalizable and can be applied to other cities with similar data availability.

Suggested Citation

  • Mepparambath, Rakhi Manohar & Soh, Yong Sheng & Jayaraman, Vasundhara & Tan, Hong En & Ramli, Muhamad Azfar, 2023. "A novel modelling approach of integrated taxi and transit mode and route choice using city-scale emerging mobility data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:transa:v:170:y:2023:i:c:s0965856423000356
    DOI: 10.1016/j.tra.2023.103615
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856423000356
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2023.103615?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masood Jafari Kang & Shervin Ataeian & S. M. Mahdi Amiripour, 2021. "A procedure for public transit OD matrix generation using smart card transaction data," Public Transport, Springer, vol. 13(1), pages 81-100, March.
    2. Raveau, Sebastián & Muñoz, Juan Carlos & de Grange, Louis, 2011. "A topological route choice model for metro," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 138-147, February.
    3. Tang, Jinjun & Liu, Fang & Wang, Yinhai & Wang, Hua, 2015. "Uncovering urban human mobility from large scale taxi GPS data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 140-153.
    4. Nassir, Neema & Hickman, Mark & Ma, Zhen-Liang, 2019. "A strategy-based recursive path choice model for public transit smart card data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 528-548.
    5. Ikki Kim & Hyoung-Chul Kim & Dong-Jeong Seo & Jung In Kim, 2020. "Calibration of a transit route choice model using revealed population data of smartcard in a multimodal transit network," Transportation, Springer, vol. 47(5), pages 2179-2202, October.
    6. Miaoyi Li & Lei Dong & Zhenjiang Shen & Wei Lang & Xinyue Ye, 2017. "Examining the Interaction of Taxi and Subway Ridership for Sustainable Urbanization," Sustainability, MDPI, vol. 9(2), pages 1-12, February.
    7. Marie Karen Anderson & Otto Anker Nielsen & Carlo Giacomo Prato, 2017. "Multimodal route choice models of public transport passengers in the Greater Copenhagen Area," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 221-245, September.
    8. Bierlaire, M. & Bolduc, D. & McFadden, D., 2008. "The estimation of generalized extreme value models from choice-based samples," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 381-394, May.
    9. Yu Liu & Chaogui Kang & Song Gao & Yu Xiao & Yuan Tian, 2012. "Understanding intra-urban trip patterns from taxi trajectory data," Journal of Geographical Systems, Springer, vol. 14(4), pages 463-483, October.
    10. Hensher, David A. & Rose, John M., 2007. "Development of commuter and non-commuter mode choice models for the assessment of new public transport infrastructure projects: A case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(5), pages 428-443, June.
    11. Robert Geisberger & Peter Sanders & Dominik Schultes & Christian Vetter, 2012. "Exact Routing in Large Road Networks Using Contraction Hierarchies," Transportation Science, INFORMS, vol. 46(3), pages 388-404, August.
    12. Liu, Xi & Gong, Li & Gong, Yongxi & Liu, Yu, 2015. "Revealing travel patterns and city structure with taxi trip data," Journal of Transport Geography, Elsevier, vol. 43(C), pages 78-90.
    13. Ma, Xiaolei & Liu, Congcong & Wen, Huimin & Wang, Yunpeng & Wu, Yao-Jan, 2017. "Understanding commuting patterns using transit smart card data," Journal of Transport Geography, Elsevier, vol. 58(C), pages 135-145.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ingvardson, Jesper Bláfoss & Thorhauge, Mikkel & Nielsen, Otto Anker & Eltved, Morten, 2024. "Public transport route choice modelling: Reducing estimation bias when using smart card data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    2. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    3. Yang, Xiping & Fang, Zhixiang & Xu, Yang & Yin, Ling & Li, Junyi & Lu, Shiwei, 2019. "Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data," Journal of Transport Geography, Elsevier, vol. 78(C), pages 29-40.
    4. Zhitao Li & Xiaolu Wang & Fan Gao & Jinjun Tang & Hanmeng Xu, 2024. "Analysis of mobility patterns for urban taxi ridership: the role of the built environment," Transportation, Springer, vol. 51(4), pages 1409-1431, August.
    5. Zhao, Pengxiang & Kwan, Mei-Po & Qin, Kun, 2017. "Uncovering the spatiotemporal patterns of CO2 emissions by taxis based on Individuals' daily travel," Journal of Transport Geography, Elsevier, vol. 62(C), pages 122-135.
    6. He, Zhengbing, 2020. "Spatial-temporal fractal of urban agglomeration travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    7. Nielsen, Otto Anker & Eltved, Morten & Anderson, Marie Karen & Prato, Carlo Giacomo, 2021. "Relevance of detailed transfer attributes in large-scale multimodal route choice models for metropolitan public transport passengers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 76-92.
    8. Mohammad Nurul Hassan & Taha Hossein Rashidi & Neema Nassir, 2021. "Consideration of different travel strategies and choice set sizes in transit path choice modelling," Transportation, Springer, vol. 48(2), pages 723-746, April.
    9. Xintao Liu & Joseph Y. J. Chow & Songnian Li, 2018. "Online monitoring of local taxi travel momentum and congestion effects using projections of taxi GPS-based vector fields," Journal of Geographical Systems, Springer, vol. 20(3), pages 253-274, July.
    10. Yong Gao & Jiajun Liu & Yan Xu & Lan Mu & Yu Liu, 2019. "A Spatiotemporal Constraint Non-Negative Matrix Factorization Model to Discover Intra-Urban Mobility Patterns from Taxi Trips," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    11. Fangye Du & Jiaoe Wang & Yu Liu & Zihao Zhou & Haitao Jin, 2022. "Equity in Health-Seeking Behavior of Groups Using Different Transportations," IJERPH, MDPI, vol. 19(5), pages 1-16, February.
    12. Zhang, Xiaohu & Xu, Yang & Tu, Wei & Ratti, Carlo, 2018. "Do different datasets tell the same story about urban mobility — A comparative study of public transit and taxi usage," Journal of Transport Geography, Elsevier, vol. 70(C), pages 78-90.
    13. Kirtonia, Sajeeb & Sun, Yanshuo, 2022. "Evaluating rail transit's comparative advantages in travel cost and time over taxi with open data in two U.S. cities," Transport Policy, Elsevier, vol. 115(C), pages 75-87.
    14. Chen, Enhui & Stathopoulos, Amanda & Nie, Yu (Marco), 2022. "Transfer station choice in a multimodal transit system: An empirical study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 337-355.
    15. Tu, Wei & Cao, Rui & Yue, Yang & Zhou, Baoding & Li, Qiuping & Li, Qingquan, 2018. "Spatial variations in urban public ridership derived from GPS trajectories and smart card data," Journal of Transport Geography, Elsevier, vol. 69(C), pages 45-57.
    16. Changhee Kim & Soo Wook Kim & Hee Jay Kang & Seung-Min Song, 2017. "What Makes Urban Transportation Efficient? Evidence from Subway Transfer Stations in Korea," Sustainability, MDPI, vol. 9(11), pages 1-18, November.
    17. Chaogui Kang & Dongwan Fan & Hongzan Jiao, 2021. "Validating activity, time, and space diversity as essential components of urban vitality," Environment and Planning B, , vol. 48(5), pages 1180-1197, June.
    18. Yang, Zhuo & Franz, Mark L. & Zhu, Shanjiang & Mahmoudi, Jina & Nasri, Arefeh & Zhang, Lei, 2018. "Analysis of Washington, DC taxi demand using GPS and land-use data," Journal of Transport Geography, Elsevier, vol. 66(C), pages 35-44.
    19. Ling Zhang & Jingjing Hao & Xiaofeng Ji & Lan Liu, 2019. "Research on the Complex Characteristics of Freight Transportation from a Multiscale Perspective Using Freight Vehicle Trip Data," Sustainability, MDPI, vol. 11(7), pages 1-20, March.
    20. Xia, Dawen & Jiang, Shunying & Yang, Nan & Hu, Yang & Li, Yantao & Li, Huaqing & Wang, Lin, 2021. "Discovering spatiotemporal characteristics of passenger travel with mobile trajectory big data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:170:y:2023:i:c:s0965856423000356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.