IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i19p4094-d1249153.html
   My bibliography  Save this article

An Innovative Approach to Predict the Diffusion Rate of Reactant’s Effects on the Performance of the Polymer Electrolyte Membrane Fuel Cell

Author

Listed:
  • Nima Ahmadi

    (Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran 14357-61137, Iran)

  • Sajad Rezazadeh

    (Mechanical Engineering Department, Renewable Energies Faculty, Urmia University of Technology, Urmia 57561-51818, Iran)

Abstract

As the analytical solution can provide much more accurate and reliable results in a short time, in the present study, an innovative analytical approach based on the perturbation method is proposed. The governing equations, which consist of continuity, momentum, species, and energy equations, are solved analytically by using the regular perturbation method. The perturbation parameter is the function of the penetration (diffusion) velocity. At first, the momentum and continuity equations are coupled together and solved analytically to find the velocity distribution. In the polymer electrolyte membrane fuel cell (PEMFC), the penetration velocity can be increased by increasing the gas diffusion layer (GDL) porosity and the operating pressure of the PEMFC. The solution showed that by increasing the perturbation parameter from 0 to the higher values, the diffusion of the reactant toward the gas channel to the GDL is improved too, leading to the enhancement of the performance of the PEMFC. The axial velocity profile tends to the bottom of the flow channel. This fact helps the reactant to transfer into the reaction area quickly. For perturbation parameter 0.5, in the species equation, the distribution of species in the reaction areas is more regular and uniform. For the lower magnitudes of the Peclet number, the species gradient is enhanced, and as a result, the concentration loss takes place at the exit region of the channel. Also, increasing the perturbation parameter causes an increase in the temperature gradient along the flow channel. For higher perturbation parameters, there is a higher temperature gradient from the bottom to the top of the track in the flow direction. The temperature profile in the y direction has a nonlinear profile at the inlet region of the channel, which is converted to the linear profile at the exit region. To verify the extracted analytical results, the three-dimensional computational fluid dynamic model based on the finite volume method is developed. All of the achieved analytical results are compared to the numerical ones in the same condition with perfect accordance.

Suggested Citation

  • Nima Ahmadi & Sajad Rezazadeh, 2023. "An Innovative Approach to Predict the Diffusion Rate of Reactant’s Effects on the Performance of the Polymer Electrolyte Membrane Fuel Cell," Mathematics, MDPI, vol. 11(19), pages 1-25, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4094-:d:1249153
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/19/4094/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/19/4094/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Shihua & Chen, Tao & Zhang, Cheng & Xie, Yi, 2020. "Study on the performance of proton exchange membrane fuel cell (PEMFC) with dead-ended anode in gravity environment," Applied Energy, Elsevier, vol. 261(C).
    2. Haji, Shaker, 2011. "Analytical modeling of PEM fuel cell i–V curve," Renewable Energy, Elsevier, vol. 36(2), pages 451-458.
    3. Mahdavi, Arash & Ranjbar, Ali Akbar & Gorji, Mofid & Rahimi-Esbo, Mazaher, 2018. "Numerical simulation based design for an innovative PEMFC cooling flow field with metallic bipolar plates," Applied Energy, Elsevier, vol. 228(C), pages 656-666.
    4. Chu, Tiankuo & Tang, Qianwen & Wang, Qinpu & Wang, Yanbo & Du, Hong & Guo, YuQing & Li, Bing & Yang, Daijun & Ming, Pingwen & Zhang, Cunman, 2023. "Experimental study on the effect of flow channel parameters on the durability of PEMFC stack and analysis of hydrogen crossover mechanism," Energy, Elsevier, vol. 264(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dilmurod Turimov & Abduvali Khaldjigitov & Umidjon Djumayozov & Wooseong Kim, 2023. "Formulation and Numerical Solution of Plane Problems of the Theory of Elasticity in Strains," Mathematics, MDPI, vol. 12(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanghyun Yun & Jinwon Yun & Jaeyoung Han, 2023. "Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using Simscape TM," Energies, MDPI, vol. 16(24), pages 1-22, December.
    2. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
    3. Zhiani, Mohammad & Majidi, Somayeh & Silva, Valter Bruno & Gharibi, Hussein, 2016. "Comparison of the performance and EIS (electrochemical impedance spectroscopy) response of an activated PEMFC (proton exchange membrane fuel cell) under low and high thermal and pressure stresses," Energy, Elsevier, vol. 97(C), pages 560-567.
    4. Ma, Haoran & Liu, Junheng & Liang, Wenwen & Li, Jiyu & Zhao, Wenyao & Sun, Ping & Ji, Qian, 2024. "Effects of PEMFC cooling channel insulation coating on heat transfer and electrical discharge characteristics of nanofluid coolants," Applied Energy, Elsevier, vol. 357(C).
    5. Bing Xu & Dongxu Li & Zheshu Ma & Meng Zheng & Yanju Li, 2021. "Thermodynamic Optimization of a High Temperature Proton Exchange Membrane Fuel Cell for Fuel Cell Vehicle Applications," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    6. Chen, Chaogang & Gao, Yuan, 2024. "Using multi-threshold non-local means joint distribution method to analysis the spatial distribution patterns of binder and fibers in gas diffusion layers of fuel cells," Applied Energy, Elsevier, vol. 358(C).
    7. Özçelep, Yasin & Sevgen, Selcuk & Samli, Ruya, 2020. "A study on the hydrogen consumption calculation of proton exchange membrane fuel cells for linearly increasing loads: Artificial Neural Networks vs Multiple Linear Regression," Renewable Energy, Elsevier, vol. 156(C), pages 570-578.
    8. Liu, Yang & Tu, Zhengkai & Chan, Siew Hwa, 2023. "Water management and performance enhancement in a proton exchange membrane fuel cell system using optimized gas recirculation devices," Energy, Elsevier, vol. 279(C).
    9. Yu, Xianxian & Cai, Shanshan & Luo, Xiaobing & Tu, Zhengkai, 2024. "Barrel effect in an air-cooled proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 286(C).
    10. Antoine Bäumler & Jianwen Meng & Abdelmoudjib Benterki & Toufik Azib & Moussa Boukhnifer, 2023. "A System-Level Modeling of PEMFC Considering Degradation Aspect towards a Diagnosis Process," Energies, MDPI, vol. 16(14), pages 1-19, July.
    11. Yin, Cong & Song, Yating & Liu, Meiru & Gao, Yan & Li, Kai & Qiao, Zemin & Tang, Hao, 2022. "Investigation of proton exchange membrane fuel cell stack with inversely phased wavy flow field design," Applied Energy, Elsevier, vol. 305(C).
    12. Promsen, Mungmuang & Komatsu, Yosuke & Sciazko, Anna & Kaneko, Shozo & Shikazono, Naoki, 2020. "Feasibility study on saturated water cooled solid oxide fuel cell stack," Applied Energy, Elsevier, vol. 279(C).
    13. Kim, Jungmyung & Park, Heesung, 2019. "Electrokinetic parameters of a vanadium redox flow battery with varying temperature and electrolyte flow rate," Renewable Energy, Elsevier, vol. 138(C), pages 284-291.
    14. Zuo, Jian & Lv, Hong & Zhou, Daming & Xue, Qiong & Jin, Liming & Zhou, Wei & Yang, Daijun & Zhang, Cunman, 2021. "Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application," Applied Energy, Elsevier, vol. 281(C).
    15. Oluwatosin Ijaodola & Emmanuel Ogungbemi & Fawwad Nisar. Khatib & Tabbi Wilberforce & Mohamad Ramadan & Zaki El Hassan & James Thompson & Abdul Ghani Olabi, 2018. "Evaluating the Effect of Metal Bipolar Plate Coating on the Performance of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 11(11), pages 1-28, November.
    16. Giacoppo, Giosuè & Hovland, Scott & Barbera, Orazio, 2019. "2 kW Modular PEM fuel cell stack for space applications: Development and test for operation under relevant conditions," Applied Energy, Elsevier, vol. 242(C), pages 1683-1696.
    17. Lin, Rui & Diao, Xiaoyu & Ma, Tiancai & Tang, Shenghao & Chen, Liang & Liu, Dengcheng, 2019. "Optimized microporous layer for improving polymer exchange membrane fuel cell performance using orthogonal test design," Applied Energy, Elsevier, vol. 254(C).
    18. Pei, Houchang & Xiao, Chenguang & Tu, Zhengkai, 2022. "Experimental study on liquid water formation characteristics in a novel transparent proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 321(C).
    19. Wu, Ziyao & Pei, Pucheng & Xu, Huachi & Jia, Xiaoning & Ren, Peng & Wang, Bozheng, 2019. "Study on the effect of membrane electrode assembly parameters on polymer electrolyte membrane fuel cell performance by galvanostatic charging method," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Zhang, Jikai & Wang, Changjian & Zhang, Aifeng, 2022. "Experimental study on temperature and performance of an open-cathode PEMFC stack under thermal radiation environment," Applied Energy, Elsevier, vol. 311(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4094-:d:1249153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.