IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/302702.html
   My bibliography  Save this article

Robust Stability Analysis of Fractional-Order Hopfield Neural Networks with Parameter Uncertainties

Author

Listed:
  • Shuo Zhang
  • Yongguang Yu
  • Wei Hu

Abstract

The issue of robust stability for fractional-order Hopfield neural networks with parameter uncertainties is investigated in this paper. For such neural system, its existence, uniqueness, and global Mittag-Leffler stability of the equilibrium point are analyzed by employing suitable Lyapunov functionals. Based on the fractional-order Lyapunov direct method, the sufficient conditions are proposed for the robust stability of the studied networks. Moreover, robust synchronization and quasi-synchronization between the class of neural networks are discussed. Furthermore, some numerical examples are given to show the effectiveness of our obtained theoretical results.

Suggested Citation

  • Shuo Zhang & Yongguang Yu & Wei Hu, 2014. "Robust Stability Analysis of Fractional-Order Hopfield Neural Networks with Parameter Uncertainties," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-14, April.
  • Handle: RePEc:hin:jnlmpe:302702
    DOI: 10.1155/2014/302702
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2014/302702.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2014/302702.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/302702?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bahrampour, Elham & Asemani, Mohammad Hassan & Dehghani, Maryam, 2023. "Robust global synchronization of delayed incommensurate fractional-order gene regulatory networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Ravi P. Agarwal & Snezhana Hristova & Donal O’Regan, 2023. "Inequalities for Riemann–Liouville-Type Fractional Derivatives of Convex Lyapunov Functions and Applications to Stability Theory," Mathematics, MDPI, vol. 11(18), pages 1-23, September.
    3. Kassim, Mohammed D. & Tatar, Nasser-eddine, 2021. "Nonlinear fractional distributed Halanay inequality and application to neural network systems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Manel Amdouni & Jehad Alzabut & Mohammad Esmael Samei & Weerawat Sudsutad & Chatthai Thaiprayoon, 2022. "A Generalized Approach of the Gilpin–Ayala Model with Fractional Derivatives under Numerical Simulation," Mathematics, MDPI, vol. 10(19), pages 1-18, October.
    5. Wang, Yangling & Cao, Jinde & Huang, Chengdai, 2022. "Exploration of bifurcation for a fractional-order BAM neural network with n+2 neurons and mixed time delays," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    6. Shang, Weiying & Zhang, Weiwei & Chen, Dingyuan & Cao, Jinde, 2023. "New criteria of finite time synchronization of fractional-order quaternion-valued neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 436(C).
    7. Ren, Jing & Zhai, Chengbo, 2020. "Stability analysis for generalized fractional differential systems and applications," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    8. Wan, Li & Zhou, Qinghua & Liu, Jie, 2017. "Delay-dependent attractor analysis of Hopfield neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 68-72.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:302702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.