IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i1p82-d305040.html
   My bibliography  Save this article

A Novel Delay-Dependent Asymptotic Stability Conditions for Differential and Riemann-Liouville Fractional Differential Neutral Systems with Constant Delays and Nonlinear Perturbation

Author

Listed:
  • Watcharin Chartbupapan

    (Department of Mathematics, Faculty of Science, Khon Kaen University, khon Kaen 40002, Thailand)

  • Ovidiu Bagdasar

    (Department of Electronics, Computing and Mathematics, University of Derby, Derby DE22 1GB, UK)

  • Kanit Mukdasai

    (Department of Mathematics, Faculty of Science, Khon Kaen University, khon Kaen 40002, Thailand)

Abstract

The novel delay-dependent asymptotic stability of a differential and Riemann-Liouville fractional differential neutral system with constant delays and nonlinear perturbation is studied. We describe the new asymptotic stability criterion in the form of linear matrix inequalities (LMIs), using the application of zero equations, model transformation and other inequalities. Then we show the new delay-dependent asymptotic stability criterion of a differential and Riemann-Liouville fractional differential neutral system with constant delays. Furthermore, we not only present the improved delay-dependent asymptotic stability criterion of a differential and Riemann-Liouville fractional differential neutral system with single constant delay but also the new delay-dependent asymptotic stability criterion of a differential and Riemann-Liouville fractional differential neutral equation with constant delays. Numerical examples are exploited to represent the improvement and capability of results over another research as compared with the least upper bounds of delay and nonlinear perturbation.

Suggested Citation

  • Watcharin Chartbupapan & Ovidiu Bagdasar & Kanit Mukdasai, 2020. "A Novel Delay-Dependent Asymptotic Stability Conditions for Differential and Riemann-Liouville Fractional Differential Neutral Systems with Constant Delays and Nonlinear Perturbation," Mathematics, MDPI, vol. 8(1), pages 1-10, January.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:82-:d:305040
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/1/82/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/1/82/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Ju H. & Kwon, O.M., 2008. "Stability analysis of certain nonlinear differential equation," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 450-453.
    2. J. H. Park, 2005. "Delay-Dependent Criterion for Guaranteed Cost Control of Neutral Delay Systems," Journal of Optimization Theory and Applications, Springer, vol. 124(2), pages 491-502, February.
    3. Saima Rashid & Thabet Abdeljawad & Fahd Jarad & Muhammad Aslam Noor, 2019. "Some Estimates for Generalized Riemann-Liouville Fractional Integrals of Exponentially Convex Functions and Their Applications," Mathematics, MDPI, vol. 7(9), pages 1-18, September.
    4. Deng, Shaojiang & Liao, Xiaofeng & Guo, Songtao, 2009. "Asymptotic stability analysis of certain neutral differential equations: A descriptor system approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(10), pages 2981-2993.
    5. Yang, Xujun & Li, Chuandong & Huang, Tingwen & Song, Qiankun, 2017. "Mittag–Leffler stability analysis of nonlinear fractional-order systems with impulses," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 416-422.
    6. Li, Dong & Yang, Dan & Wang, Hui & Zhang, Xiaohong & Wang, Shilong, 2009. "Asymptotical stability of multi-delayed cellular neural networks with impulsive effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(2), pages 218-224.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ravi P. Agarwal & Snezhana Hristova & Donal O’Regan, 2023. "Inequalities for Riemann–Liouville-Type Fractional Derivatives of Convex Lyapunov Functions and Applications to Stability Theory," Mathematics, MDPI, vol. 11(18), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xing-Yu & Wu, Kai-Ning & Liu, Xiao-Zhen, 2023. "Mittag–Leffler stabilization for short memory fractional reaction-diffusion systems via intermittent boundary control," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    2. Syed Ali, M. & Narayanan, Govindasamy & Shekher, Vineet & Alsulami, Hamed & Saeed, Tareq, 2020. "Dynamic stability analysis of stochastic fractional-order memristor fuzzy BAM neural networks with delay and leakage terms," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    3. Park, Ju H. & Lee, S.M. & Kwon, O.M., 2009. "On exponential stability of bidirectional associative memory neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1083-1091.
    4. Duc, Tran Minh & Van Hoa, Ngo, 2021. "Stabilization of impulsive fractional-order dynamic systems involving the Caputo fractional derivative of variable-order via a linear feedback controller," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    5. Yuan Tian & Chuandong Li & Xujun Yang & Yiyan Han, 2019. "Coordinated Tracking for Nonlinear Multiagent Systems under Variable-Time Impulsive Control," Complexity, Hindawi, vol. 2019, pages 1-10, May.
    6. Gani Stamov & Ivanka Stamova & George Venkov & Trayan Stamov & Cvetelina Spirova, 2020. "Global Stability of Integral Manifolds for Reaction–Diffusion Delayed Neural Networks of Cohen–Grossberg-Type under Variable Impulsive Perturbations," Mathematics, MDPI, vol. 8(7), pages 1-18, July.
    7. Suriguga, Ma & Kao, Yonggui & Hyder, Abd-Allah, 2020. "Uniform stability of delayed impulsive reaction–diffusion systems," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    8. Huang, Conggui & Wang, Fei & Zheng, Zhaowen, 2021. "Exponential stability for nonlinear fractional order sampled-data control systems with its applications," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    9. Gani Stamov & Ivanka Stamova, 2019. "Impulsive Delayed Lasota–Wazewska Fractional Models: Global Stability of Integral Manifolds," Mathematics, MDPI, vol. 7(11), pages 1-15, October.
    10. Li, Xiaodi & Deng, Feiqi, 2017. "Razumikhin method for impulsive functional differential equations of neutral type," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 41-49.
    11. Hu, D.L. & Chen, W. & Liang, Y.J., 2019. "Inverse Mittag-Leffler stability of structural derivative nonlinear dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 304-308.
    12. Saima Rashid & Muhammad Aslam Noor & Khalida Inayat Noor & Farhat Safdar & Yu-Ming Chu, 2019. "Hermite-Hadamard Type Inequalities for the Class of Convex Functions on Time Scale," Mathematics, MDPI, vol. 7(10), pages 1-20, October.
    13. Wang, Yuangan & Yu, Honglin, 2018. "Fuzzy synchronization of chaotic systems via intermittent control," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 154-160.
    14. Jichun Wang & Qingling Zhang & Dong Xiao & Fang Bai, 2016. "Robust stability analysis and stabilisation of uncertain neutral singular systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(16), pages 3762-3771, December.
    15. Gani Stamov & Ivanka Stamova & Stanislav Simeonov & Ivan Torlakov, 2020. "On the Stability with Respect to H-Manifolds for Cohen–Grossberg-Type Bidirectional Associative Memory Neural Networks with Variable Impulsive Perturbations and Time-Varying Delays," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    16. Zhang, Lingzhong & Yang, Yongqing & Xu, Xianyun, 2018. "Synchronization analysis for fractional order memristive Cohen–Grossberg neural networks with state feedback and impulsive control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 644-660.
    17. Xue, Huanbin & Xu, Xiaohui & Zhang, Jiye & Yang, Xiaopeng, 2019. "Robust stability of impulsive switched neural networks with multiple time delays," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 456-475.
    18. Li, Ruoxia & Gao, Xingbao & Cao, Jinde, 2019. "Non-fragile state estimation for delayed fractional-order memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 221-233.
    19. Janejira Tranthi & Thongchai Botmart & Wajaree Weera & Piyapong Niamsup, 2019. "A New Approach for Exponential Stability Criteria of New Certain Nonlinear Neutral Differential Equations with Mixed Time-Varying Delays," Mathematics, MDPI, vol. 7(8), pages 1-18, August.
    20. Gani Stamov & Ivanka Stamova & Xiaodi Li & Ekaterina Gospodinova, 2019. "Practical Stability with Respect to h -Manifolds for Impulsive Control Functional Differential Equations with Variable Impulsive Perturbations," Mathematics, MDPI, vol. 7(7), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:82-:d:305040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.