IDEAS home Printed from https://ideas.repec.org/p/bbk/bbkefp/0604.html
   My bibliography  Save this paper

Fractional Diffusion Models of Option Prices in Markets with Jumps

Author

Listed:
  • Alvaro Cartea

    (Department of Economics, Mathematics & Statistics, Birkbeck)

  • Diego del-Castillo-Negrete

Abstract

Most of the recent literature dealing with the modeling of financial assets assumes that the underlying dynamics of equity prices follow a jump process or a Levy process. This is done to incorporate rare or extreme events not captured by Gaussian models. Of those financial models proposed, the most interesting include the CGMY, KoBoL and FMLS. All of these capture some of the most important characteristics of the dynamics of stock prices. In this article we show that for these particular Levy processes, the prices of financial derivatives, such as European-style options, satisfy a fractional partial differential equation (FPDE). As an application, we use numerical techniques to price exotic options, in particular barrier options, by solving the corresponding FPDEs derived.

Suggested Citation

  • Alvaro Cartea & Diego del-Castillo-Negrete, 2006. "Fractional Diffusion Models of Option Prices in Markets with Jumps," Birkbeck Working Papers in Economics and Finance 0604, Birkbeck, Department of Economics, Mathematics & Statistics.
  • Handle: RePEc:bbk:bbkefp:0604
    as

    Download full text from publisher

    File URL: https://eprints.bbk.ac.uk/id/eprint/26938
    File Function: First version, 2006
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:bla:jfinan:v:58:y:2003:i:2:p:753-778 is not listed on IDEAS
    2. S. James Press, 1967. "A Compound Events Model for Security Prices," The Journal of Business, University of Chicago Press, vol. 40, pages 317-317.
    3. Scalas, Enrico & Gorenflo, Rudolf & Mainardi, Francesco, 2000. "Fractional calculus and continuous-time finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 376-384.
    4. Rama Cont & Ekaterina Voltchkova, 2005. "A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models," Post-Print halshs-00445645, HAL.
    5. Sokolov, I.M & Chechkin, A.V & Klafter, J, 2004. "Fractional diffusion equation for a power-law-truncated Lévy process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 245-251.
    6. Mainardi, Francesco & Raberto, Marco & Gorenflo, Rudolf & Scalas, Enrico, 2000. "Fractional calculus and continuous-time finance II: the waiting-time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 468-481.
    7. Wilmott,Paul & Howison,Sam & Dewynne,Jeff, 1995. "The Mathematics of Financial Derivatives," Cambridge Books, Cambridge University Press, number 9780521497893, September.
    8. Alan L. Lewis, 2001. "A Simple Option Formula for General Jump-Diffusion and other Exponential Levy Processes," Related articles explevy, Finance Press.
    9. Ernesto Mordecki, 2002. "Optimal stopping and perpetual options for Lévy processes," Finance and Stochastics, Springer, vol. 6(4), pages 473-493.
    10. Alvaro Cartea, 2005. "Dynamic Hedging of Financial Instruments When the Underlying Follows a Non-Gaussian Process," Birkbeck Working Papers in Economics and Finance 0508, Birkbeck, Department of Economics, Mathematics & Statistics.
    11. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philipp N. Baecker, 2007. "Real Options and Intellectual Property," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-48264-2, December.
    2. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    3. Álvaro Cartea & Thilo Meyer-Brandis, 2010. "How Duration Between Trades of Underlying Securities Affects Option Prices," Review of Finance, European Finance Association, vol. 14(4), pages 749-785.
    4. Enrico Scalas & Rudolf Gorenflo & Hugh Luckock & Francesco Mainardi & Maurizio Mantelli & Marco Raberto, 2004. "Anomalous waiting times in high-frequency financial data," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 695-702.
    5. Alvaro Cartea & Thilo Meyer-Brandis, 2007. "How Does Duration Between Trades of Underlying Securities Affect Option Prices," Birkbeck Working Papers in Economics and Finance 0721, Birkbeck, Department of Economics, Mathematics & Statistics.
    6. Álvaro Cartea, 2013. "Derivatives pricing with marked point processes using tick-by-tick data," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 111-123, January.
    7. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    8. Scalas, Enrico, 2007. "Mixtures of compound Poisson processes as models of tick-by-tick financial data," Chaos, Solitons & Fractals, Elsevier, vol. 34(1), pages 33-40.
    9. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    10. Enrico Scalas, 2006. "Five Years of Continuous-time Random Walks in Econophysics," Lecture Notes in Economics and Mathematical Systems, in: Akira Namatame & Taisei Kaizouji & Yuuji Aruka (ed.), The Complex Networks of Economic Interactions, pages 3-16, Springer.
    11. Torricelli, Lorenzo, 2020. "Trade duration risk in subdiffusive financial models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    12. Askari, Hossein & Krichene, Noureddine, 2008. "Oil price dynamics (2002-2006)," Energy Economics, Elsevier, vol. 30(5), pages 2134-2153, September.
    13. Marseguerra, Marzio & Zoia, Andrea, 2008. "Pre-asymptotic corrections to fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2668-2674.
    14. Zheng, Guang-Hui & Zhang, Quan-Guo, 2018. "Solving the backward problem for space-fractional diffusion equation by a fractional Tikhonov regularization method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 148(C), pages 37-47.
    15. Ron Tat Lung Chan, 2016. "Adaptive Radial Basis Function Methods for Pricing Options Under Jump-Diffusion Models," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 623-643, April.
    16. Fan Yang & Ping Fan & Xiao-Xiao Li & Xin-Yi Ma, 2019. "Fourier Truncation Regularization Method for a Time-Fractional Backward Diffusion Problem with a Nonlinear Source," Mathematics, MDPI, vol. 7(9), pages 1-13, September.
    17. Ren, Fei & Gu, Gao-Feng & Zhou, Wei-Xing, 2009. "Scaling and memory in the return intervals of realized volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4787-4796.
    18. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    19. Hajipour, Ahamad & Hajipour, Mojtaba & Baleanu, Dumitru, 2018. "On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 139-153.
    20. Schumer, Rina & Baeumer, Boris & Meerschaert, Mark M., 2011. "Extremal behavior of a coupled continuous time random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(3), pages 505-511.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bbk:bbkefp:0604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.bbk.ac.uk/departments/ems/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.