IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5247-d867323.html
   My bibliography  Save this article

A Review of Proxy Modeling Highlighting Applications for Reservoir Engineering

Author

Listed:
  • Peyman Bahrami

    (Department of Process Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada)

  • Farzan Sahari Moghaddam

    (Department of Process Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada)

  • Lesley A. James

    (Department of Process Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada)

Abstract

Numerical models can be used for many purposes in oil and gas engineering, such as production optimization and forecasting, uncertainty analysis, history matching, and risk assessment. However, subsurface problems are complex and non-linear, and making reliable decisions in reservoir management requires substantial computational effort. Proxy models have gained much attention in recent years. They are advanced non-linear interpolation tables that can approximate complex models and alleviate computational effort. Proxy models are constructed by running high-fidelity models to gather the necessary data to create the proxy model. Once constructed, they can be a great choice for different tasks such as uncertainty analysis, optimization, forecasting, etc. The application of proxy modeling in oil and gas has had an increasing trend in recent years, and there is no consensus rule on the correct choice of proxy model. As a result, it is crucial to better understand the advantages and disadvantages of various proxy models. The existing work in the literature does not comprehensively cover all proxy model types, and there is a considerable requirement for fulfilling the existing gaps in summarizing the classification techniques with their applications. We propose a novel categorization method covering all proxy model types. This review paper provides a more comprehensive guideline on comparing and developing a proxy model compared to the existing literature. Furthermore, we point out the advantages of smart proxy models (SPM) compared to traditional proxy models (TPM) and suggest how we may further improve SPM accuracy where the literature is limited. This review paper first introduces proxy models and shows how they are classified in the literature. Then, it explains that the current classifications cannot cover all types of proxy models and proposes a novel categorization based on various development strategies. This new categorization includes four groups multi-fidelity models (MFM), reduced-order models (ROM), TPM, and SPM. MFMs are constructed based on simplifying physics assumptions (e.g., coarser discretization), and ROMs are based on dimensional reduction (i.e., neglecting irrelevant parameters). Developing these two models requires an in-depth knowledge of the problem. In contrast, TPMs and novel SPMs require less effort. In other words, they do not solve the complex underlying mathematical equations of the problem; instead, they decouple the mathematical equations into a numeric dataset and train statistical/AI-driven models on the dataset. Nevertheless, SPMs implement feature engineering techniques (i.e., generating new parameters) for its development and can capture the complexities within the reservoir, such as the constraints and characteristics of the grids. The newly introduced parameters can help find the hidden patterns within the parameters, which eventually increase the accuracy of SPMs compared to the TPMs. This review highlights the superiority of SPM over traditional statistical/AI-based proxy models. Finally, the application of various proxy models in the oil and gas industry, especially in subsurface modeling with a set of real examples, is presented. The introduced guideline in this review aids the researchers in obtaining valuable information on the current state of PM problems in the oil and gas industry.

Suggested Citation

  • Peyman Bahrami & Farzan Sahari Moghaddam & Lesley A. James, 2022. "A Review of Proxy Modeling Highlighting Applications for Reservoir Engineering," Energies, MDPI, vol. 15(14), pages 1-32, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5247-:d:867323
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5247/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5247/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rafael Wanderley de Holanda & Eduardo Gildin & Jerry L. Jensen & Larry W. Lake & C. Shah Kabir, 2018. "A State-of-the-Art Literature Review on Capacitance Resistance Models for Reservoir Characterization and Performance Forecasting," Energies, MDPI, vol. 11(12), pages 1-45, December.
    2. Rennen, G. & Husslage, B.G.M. & van Dam, E.R. & den Hertog, D., 2009. "Nested Maximin Latin Hypercube Designs," Discussion Paper 2009-06, Tilburg University, Center for Economic Research.
    3. Younhee Choi & Doosam Song & Sungmin Yoon & Junemo Koo, 2021. "Comparison of Factorial and Latin Hypercube Sampling Designs for Meta-Models of Building Heating and Cooling Loads," Energies, MDPI, vol. 14(2), pages 1-23, January.
    4. S. Razmyan & F. Hosseinzadeh Lotfi, 2012. "An Application of Monte-Carlo-Based Sensitivity Analysis on the Overlap in Discriminant Analysis," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-14, November.
    5. Storlie, Curtis B. & Swiler, Laura P. & Helton, Jon C. & Sallaberry, Cedric J., 2009. "Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1735-1763.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mkhitar Ovsepian & Egor Lys & Alexander Cheremisin & Stanislav Frolov & Rustam Kurmangaliev & Eduard Usov & Vladimir Ulyanov & Dmitry Tailakov & Nikita Kayurov, 2023. "Testing the INSIM-FT Proxy Simulation Method," Energies, MDPI, vol. 16(4), pages 1-16, February.
    2. Alexey Dengaev & Vladimir Verbitsky & Olga Eremenko & Anna Novikova & Andrey Getalov & Boris Sargin, 2022. "Water-in-Oil Emulsions Separation Using a Controlled Multi-Frequency Acoustic Field at an Operating Facility," Energies, MDPI, vol. 15(17), pages 1-16, August.
    3. Anna Samnioti & Vassilis Gaganis, 2023. "Applications of Machine Learning in Subsurface Reservoir Simulation—A Review—Part I," Energies, MDPI, vol. 16(16), pages 1-43, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helton, Jon C. & Johnson, Jay D. & Sallaberry, Cédric J., 2011. "Quantification of margins and uncertainties: Example analyses from reactor safety and radioactive waste disposal involving the separation of aleatory and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1014-1033.
    2. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    3. Weiyan Mu & Chengxin Liu & Shifeng Xiong, 2023. "Nested Maximum Entropy Designs for Computer Experiments," Mathematics, MDPI, vol. 11(16), pages 1-12, August.
    4. Matieyendou Lamboni, 2020. "Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices," Statistical Papers, Springer, vol. 61(5), pages 1939-1970, October.
    5. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    6. Wang, Tianzhe & Chen, Zequan & Li, Guofa & He, Jialong & Liu, Chao & Du, Xuejiao, 2024. "A novel method for high-dimensional reliability analysis based on activity score and adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Tianyang Wang & James S. Dyer & Warren J. Hahn, 2017. "Sensitivity analysis of decision making under dependent uncertainties using copulas," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 117-139, November.
    8. Martorell, S. & Villamizar, M. & Martón, I. & Villanueva, J.F. & Carlos, S. & Sánchez, A.I., 2014. "Evaluation of risk impact of changes to surveillance requirements addressing model and parameter uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 153-165.
    9. Wang, Fuzhang & Idrees, M & Sohail, Ayesha, 2022. "“AI-MCMC” for the parametric analysis of the hormonal therapy of cancer," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    10. J. Rohmer & S. Lecacheux & R. Pedreros & H. Quetelard & F. Bonnardot & D. Idier, 2016. "Dynamic parameter sensitivity in numerical modelling of cyclone-induced waves: a multi-look approach using advanced meta-modelling techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1765-1792, December.
    11. Zio, E. & Pedroni, N., 2012. "Monte Carlo simulation-based sensitivity analysis of the model of a thermal–hydraulic passive system," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 90-106.
    12. Deman, G. & Konakli, K. & Sudret, B. & Kerrou, J. & Perrochet, P. & Benabderrahmane, H., 2016. "Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 156-169.
    13. Daigang Wang & Yong Li & Jing Zhang & Chenji Wei & Yuwei Jiao & Qi Wang, 2019. "Improved CRM Model for Inter-Well Connectivity Estimation and Production Optimization: Case Study for Karst Reservoirs," Energies, MDPI, vol. 12(5), pages 1-15, March.
    14. Edwin Dam & Bart Husslage & Dick Hertog, 2010. "One-dimensional nested maximin designs," Journal of Global Optimization, Springer, vol. 46(2), pages 287-306, February.
    15. Reder, Klara & Alcamo, Joseph & Flörke, Martina, 2017. "A sensitivity and uncertainty analysis of a continental-scale water quality model of pathogen pollution in African rivers," Ecological Modelling, Elsevier, vol. 351(C), pages 129-139.
    16. Tang, Zhang-Chun & Zuo, Ming J. & Xiao, Ningcong, 2016. "An efficient method for evaluating the effect of input parameters on the integrity of safety systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 111-123.
    17. Aswin Balasubramanian & Floran Martin & Md Masum Billah & Osaruyi Osemwinyen & Anouar Belahcen, 2021. "Application of Surrogate Optimization Routine with Clustering Technique for Optimal Design of an Induction Motor," Energies, MDPI, vol. 14(16), pages 1-19, August.
    18. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    19. Touzani, Samir & Busby, Daniel, 2013. "Smoothing spline analysis of variance approach for global sensitivity analysis of computer codes," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 67-81.
    20. Matieyendou Lamboni, 2018. "Global sensitivity analysis: a generalized, unbiased and optimal estimator of total-effect variance," Statistical Papers, Springer, vol. 59(1), pages 361-386, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5247-:d:867323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.