IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v10y2022i4p34-d988008.html
   My bibliography  Save this article

Validation of a Computer Code for the Energy Consumption of a Building, with Application to Optimal Electric Bill Pricing

Author

Listed:
  • Merlin Keller

    (Électricité de France, 78401 Chatou, France)

  • Guillaume Damblin

    (CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France)

  • Alberto Pasanisi

    (Edison, 20121 Milano, Italy)

  • Mathieu Schumann

    (Électricité de France, 91120 Palaiseau, France)

  • Pierre Barbillon

    (Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, 91120 Palaiseau, France)

  • Fabrizio Ruggeri

    (CNR IMATI, Via Alfonso Corti 12, 20133 Milano, Italy)

  • Eric Parent

    (Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, 91120 Palaiseau, France)

Abstract

In this paper, we present a case study aimed at determining a billing plan that ensures customer loyalty and provides a profit for the energy company, whose point of view is taken in the paper. The energy provider promotes new contracts for residential buildings, in which customers pay a fixed rate chosen in advance, based on an overall energy consumption forecast. For such a purpose, we consider a practical Bayesian framework for the calibration and validation of a computer code used to forecast the energy consumption of a building. On the basis of power field measurements, collected from an experimental building cell in a given period of time, the code is calibrated, effectively reducing the epistemic uncertainty affecting the most relevant parameters of the code (albedo, thermal bridge factor, and convective coefficient). The validation is carried out by testing the goodness of fit of the code with respect to the field measurements, and then propagating the posterior parametric uncertainty through the code, obtaining probabilistic forecasts of the average electrical power delivered inside the cell in a given period of time. Finally, Bayesian decision-making methods are used to choose the optimal fixed rate (for the energy provider) of the contract, in order to balance short-term benefits with customer retention. We identify three significant contributions of the paper. First of all, the case study data were never analyzed from a Bayesian viewpoint, which is relevant here not only for estimating the parameters but also for properly assessing the uncertainty about the forecasts. Furthermore, the study of optimal policies for energy providers in this framework is new, to the best of our knowledge. Finally, we propose Bayesian posterior predictive p -value for validation.

Suggested Citation

  • Merlin Keller & Guillaume Damblin & Alberto Pasanisi & Mathieu Schumann & Pierre Barbillon & Fabrizio Ruggeri & Eric Parent, 2022. "Validation of a Computer Code for the Energy Consumption of a Building, with Application to Optimal Electric Bill Pricing," Econometrics, MDPI, vol. 10(4), pages 1-24, November.
  • Handle: RePEc:gam:jecnmx:v:10:y:2022:i:4:p:34-:d:988008
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/10/4/34/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/10/4/34/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cox, Dennis D. & Park, Jeong-Soo & Singer, Clifford E., 2001. "A statistical method for tuning a computer code to a data base," Computational Statistics & Data Analysis, Elsevier, vol. 37(1), pages 77-92, July.
    2. Yen-chang Chang & Wen-liang Hung, 2007. "LINEX Loss Functions with Applications to Determining the Optimum Process Parameters," Quality & Quantity: International Journal of Methodology, Springer, vol. 41(2), pages 291-301, April.
    3. Shamsi, Mohammad Haris & Ali, Usman & Mangina, Eleni & O’Donnell, James, 2020. "A framework for uncertainty quantification in building heat demand simulations using reduced-order grey-box energy models," Applied Energy, Elsevier, vol. 275(C).
    4. Fonseca, Jimeno A. & Nevat, Ido & Peters, Gareth W., 2020. "Quantifying the uncertain effects of climate change on building energy consumption across the United States," Applied Energy, Elsevier, vol. 277(C).
    5. Pasanisi, Alberto & Keller, Merlin & Parent, Eric, 2012. "Estimation of a quantity of interest in uncertainty analysis: Some help from Bayesian decision theory," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 93-101.
    6. Campbell, Katherine, 2006. "Statistical calibration of computer simulations," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1358-1363.
    7. Wate, P. & Iglesias, M. & Coors, V. & Robinson, D., 2020. "Framework for emulation and uncertainty quantification of a stochastic building performance simulator," Applied Energy, Elsevier, vol. 258(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Merlin Keller & Guillaume Damblin & Alberto Pasanisi & Mathieu Schumann & Pierre Barbillon & Fabrizio Ruggeri, 2022. "Validation of a Computer Code for the Energy Consumption of a Building, with Application to Optimal Electric Bill Pricing," Post-Print hal-04071903, HAL.
    2. Weiyan Mu & Chengxin Liu & Shifeng Xiong, 2023. "Nested Maximum Entropy Designs for Computer Experiments," Mathematics, MDPI, vol. 11(16), pages 1-12, August.
    3. Shi, Peng & Wang, Lin-Shu & Schwartz, Paul & Hofbauer, Peter, 2020. "State-wide comparative analysis of the cost saving potential of Vuilleumier heat pumps in residential houses," Applied Energy, Elsevier, vol. 277(C).
    4. Drignei, Dorin, 2011. "A general statistical model for computer experiments with time series output," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 460-467.
    5. Yuan, Jun & Ng, Szu Hui, 2013. "A sequential approach for stochastic computer model calibration and prediction," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 273-286.
    6. Shamsi, Mohammad Haris & Ali, Usman & Mangina, Eleni & O’Donnell, James, 2021. "Feature assessment frameworks to evaluate reduced-order grey-box building energy models," Applied Energy, Elsevier, vol. 298(C).
    7. Guan, Zepeng & Hossain, Mohammad Razib & Sheikh, Muhammad Ramzan & Khan, Zeeshan & Gu, Xiao, 2023. "Unveiling the interconnectedness between energy-related GHGs and pro-environmental energy technology: Lessons from G-7 economies with MMQR approach," Energy, Elsevier, vol. 281(C).
    8. Mike G. Tsionas, 2023. "Linex and double-linex regression for parameter estimation and forecasting," Annals of Operations Research, Springer, vol. 323(1), pages 229-245, April.
    9. Chang, Yen-Chang & Liu, Ching-Ti & Hung, Wen-Liang, 2009. "Optimization of process parameters using weighted convex loss functions," European Journal of Operational Research, Elsevier, vol. 196(2), pages 752-763, July.
    10. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    11. Perrin, G., 2020. "Adaptive calibration of a computer code with time-series output," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    12. Wu, Xu & Kozlowski, Tomasz & Meidani, Hadi, 2018. "Kriging-based inverse uncertainty quantification of nuclear fuel performance code BISON fission gas release model using time series measurement data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 422-436.
    13. Ohlsson, K.E. Anders & Nair, Gireesh & Olofsson, Thomas, 2022. "Uncertainty in model prediction of energy savings in building retrofits: Case of thermal transmittance of windows," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "Impact of adjustment strategies on building design process in different climates oriented by multiple performance," Applied Energy, Elsevier, vol. 266(C).
    15. Jeffrey S. Racine & Christopher F. Parmeter, 2012. "Data-Driven Model Evaluation: A Test for Revealed Performance," Department of Economics Working Papers 2012-13, McMaster University.
    16. Alvaro Llaria & Jessye Dos Santos & Guillaume Terrasson & Zina Boussaada & Christophe Merlo & Octavian Curea, 2021. "Intelligent Buildings in Smart Grids: A Survey on Security and Privacy Issues Related to Energy Management," Energies, MDPI, vol. 14(9), pages 1-37, May.
    17. Hjelkrem, Anne-Grete Roer & Höglind, Mats & van Oijen, Marcel & Schellberg, Jürgen & Gaiser, Thomas & Ewert, Frank, 2017. "Sensitivity analysis and Bayesian calibration for testing robustness of the BASGRA model in different environments," Ecological Modelling, Elsevier, vol. 359(C), pages 80-91.
    18. Wiethe, Christian & Wenninger, Simon, 2023. "The influence of building energy performance prediction accuracy on retrofit rates," Energy Policy, Elsevier, vol. 177(C).
    19. Hong, H.P., 2013. "Selection of regressand for fitting the extreme value distributions using the ordinary, weighted and generalized least-squares methods," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 71-80.
    20. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2022. "Physically Consistent Neural Networks for building thermal modeling: Theory and analysis," Applied Energy, Elsevier, vol. 325(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:10:y:2022:i:4:p:34-:d:988008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.