IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v117y2022i537p375-385.html
   My bibliography  Save this article

On Design Orthogonality, Maximin Distance, and Projection Uniformity for Computer Experiments

Author

Listed:
  • Yaping Wang
  • Fasheng Sun
  • Hongquan Xu

Abstract

Space-filling designs are widely used in both computer and physical experiments. Column-orthogonality, maximin distance, and projection uniformity are three basic and popular space-filling criteria proposed from different perspectives, but their relationships have been rarely investigated. We show that the average squared correlation metric is a function of the pairwise L2-distances between the rows only. We further explore the connection between uniform projection designs and maximin L1-distance designs. Based on these connections, we develop new lower and upper bounds for column-orthogonality and projection uniformity from the perspective of distance between design points. These results not only provide new theoretical justifications for each criterion but also help in finding better space-filling designs under multiple criteria. Supplementary materials for this article are available online.

Suggested Citation

  • Yaping Wang & Fasheng Sun & Hongquan Xu, 2022. "On Design Orthogonality, Maximin Distance, and Projection Uniformity for Computer Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 375-385, January.
  • Handle: RePEc:taf:jnlasa:v:117:y:2022:i:537:p:375-385
    DOI: 10.1080/01621459.2020.1782221
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2020.1782221
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2020.1782221?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bing Guo & Xiao-Rong Li & Min-Qian Liu & Xue Yang, 2023. "Construction of orthogonal general sliced Latin hypercube designs," Statistical Papers, Springer, vol. 64(3), pages 987-1014, June.
    2. Weiyan Mu & Chengxin Liu & Shifeng Xiong, 2023. "Nested Maximum Entropy Designs for Computer Experiments," Mathematics, MDPI, vol. 11(16), pages 1-12, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:117:y:2022:i:537:p:375-385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.