IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i15p3401-d1210268.html
   My bibliography  Save this article

Lithium-Ion Battery Modeling and State of Charge Prediction Based on Fractional-Order Calculus

Author

Listed:
  • Xinfeng Zhang

    (Key Laboratory of Automotive Transportation Safety and Security Technology Transportation Industry, Chang’an University, Xi’an 710064, China
    School of Automobile, Chang’an University, Xi’an 710064, China)

  • Xiangjun Li

    (School of Information Engineering, Xi’an University, Xi’an 710065, China)

  • Kaikai Yang

    (Key Laboratory of Automotive Transportation Safety and Security Technology Transportation Industry, Chang’an University, Xi’an 710064, China
    School of Automobile, Chang’an University, Xi’an 710064, China)

  • Zhongyi Wang

    (Key Laboratory of Automotive Transportation Safety and Security Technology Transportation Industry, Chang’an University, Xi’an 710064, China
    School of Automobile, Chang’an University, Xi’an 710064, China)

Abstract

Predicting lithium-ion batteries’ state of charge (SOC) is essential to electric vehicle battery management systems. Traditional lithium-ion battery models mainly include equivalent circuit models (ECMs) and electrochemical models (EMs). ECMs are based on integer-order component modeling, which cannot characterize the internal electrochemical reaction mechanism of the battery, resulting in lower SOC prediction accuracy. In contrast, due to their complex structure, EMs are limited in their application. This study takes lithium batteries as the research object and proposes a fractional-order impedance model (FOIM) that characterizes the dynamic properties of the internal behavior of lithium-ion batteries using fractional-order elements. Considering the highly nonlinear characteristics of lithium-ion batteries, this study introduces the theory of fractional-order calculus into the extended Kalman filter (EKF) algorithm, and proposes the fractional-order extended Kalman filter (FEKF) algorithm applied to the prediction of battery charge state. Comparative analysis of simulation and experimental results shows that the accuracy of the FOIM, compared to ECMs, is significantly improved. The FEKF algorithm has good robustness in estimating the SOC, and the SOC prediction accuracy achieved with the algorithm is also improved compared with that obtained using the EKF algorithm of the integer-order model.

Suggested Citation

  • Xinfeng Zhang & Xiangjun Li & Kaikai Yang & Zhongyi Wang, 2023. "Lithium-Ion Battery Modeling and State of Charge Prediction Based on Fractional-Order Calculus," Mathematics, MDPI, vol. 11(15), pages 1-15, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:15:p:3401-:d:1210268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/15/3401/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/15/3401/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xin Zhang & Jiawei Hou & Zekun Wang & Yueqiu Jiang, 2022. "Joint SOH-SOC Estimation Model for Lithium-Ion Batteries Based on GWO-BP Neural Network," Energies, MDPI, vol. 16(1), pages 1-17, December.
    2. Li Zhang & Min Zheng & Dajun Du & Yihuan Li & Minrui Fei & Yuanjun Guo & Kang Li, 2020. "State-of-Charge Estimation of Lithium-Ion Battery Pack Based on Improved RBF Neural Networks," Complexity, Hindawi, vol. 2020, pages 1-10, December.
    3. Gong, Dongliang & Gao, Ying & Kou, Yalin & Wang, Yurang, 2022. "State of health estimation for lithium-ion battery based on energy features," Energy, Elsevier, vol. 257(C).
    4. Qiao, Jialu & Wang, Shunli & Yu, Chunmei & Yang, Xiao & Fernandez, Carlos, 2023. "A chaotic firefly - Particle filtering method of dynamic migration modeling for the state-of-charge and state-of-health co-estimation of a lithium-ion battery performance," Energy, Elsevier, vol. 263(PE).
    5. Peng, Jiankun & Luo, Jiayi & He, Hongwen & Lu, Bing, 2019. "An improved state of charge estimation method based on cubature Kalman filter for lithium-ion batteries," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Chunning Song & Yu Zhang & Qijin Ling & Shaogeng Zheng, 2022. "Joint Estimation of SOC and SOH for Single-Flow Zinc–Nickel Batteries," Energies, MDPI, vol. 15(13), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    2. Pablo Carrasco Ortega & Pablo Durán Gómez & Julio César Mérida Sánchez & Fernando Echevarría Camarero & Ángel Á. Pardiñas, 2023. "Battery Energy Storage Systems for the New Electricity Market Landscape: Modeling, State Diagnostics, Management, and Viability—A Review," Energies, MDPI, vol. 16(17), pages 1-51, August.
    3. He, Lin & Wang, Yangyang & Wei, Yujiang & Wang, Mingwei & Hu, Xiaosong & Shi, Qin, 2022. "An adaptive central difference Kalman filter approach for state of charge estimation by fractional order model of lithium-ion battery," Energy, Elsevier, vol. 244(PA).
    4. Chen, Liping & Wu, Xiaobo & Lopes, António M. & Yin, Lisheng & Li, Penghua, 2022. "Adaptive state-of-charge estimation of lithium-ion batteries based on square-root unscented Kalman filter," Energy, Elsevier, vol. 252(C).
    5. Chen, Lin & Yu, Wentao & Cheng, Guoyang & Wang, Jierui, 2023. "State-of-charge estimation of lithium-ion batteries based on fractional-order modeling and adaptive square-root cubature Kalman filter," Energy, Elsevier, vol. 271(C).
    6. Wang, Jiajia & Yue, Xiyan & Wang, Peifen & Yu, Tao & Du, Xiao & Hao, Xiaogang & Abudula, Abuliti & Guan, Guoqing, 2022. "Electrochemical technologies for lithium recovery from liquid resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    8. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
    9. Zhang, Chaoyu & Zhang, Chengming & Li, Liyi & Guo, Qingbo, 2021. "Parameter analysis of power system for solar-powered unmanned aerial vehicle," Applied Energy, Elsevier, vol. 295(C).
    10. Hu, Chunsheng & Ma, Liang & Guo, Shanshan & Guo, Gangsheng & Han, Zhiqiang, 2022. "Deep learning enabled state-of-charge estimation of LiFePO4 batteries: A systematic validation on state-of-the-art charging protocols," Energy, Elsevier, vol. 246(C).
    11. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    12. Bizhong Xia & Guanyong Zhang & Huiyuan Chen & Yuheng Li & Zhuojun Yu & Yunchao Chen, 2022. "Verification Platform of SOC Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles," Energies, MDPI, vol. 15(9), pages 1-20, April.
    13. Xingtao Liu & Chaoyi Zheng & Ji Wu & Jinhao Meng & Daniel-Ioan Stroe & Jiajia Chen, 2020. "An Improved State of Charge and State of Power Estimation Method Based on Genetic Particle Filter for Lithium-ion Batteries," Energies, MDPI, vol. 13(2), pages 1-16, January.
    14. Zhang, Guangxu & Wei, Xuezhe & Tang, Xuan & Zhu, Jiangong & Chen, Siqi & Dai, Haifeng, 2021. "Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    15. Cynthia Thamires da Silva & Bruno Martin de Alcântara Dias & Rui Esteves Araújo & Eduardo Lorenzetti Pellini & Armando Antônio Maria Laganá, 2023. "Two-Outputs Nonlinear Grey Box Model for Lithium-Ion Batteries," Energies, MDPI, vol. 16(5), pages 1-15, February.
    16. Tian, Yong & Lai, Rucong & Li, Xiaoyu & Xiang, Lijuan & Tian, Jindong, 2020. "A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter," Applied Energy, Elsevier, vol. 265(C).
    17. Semeraro, Concetta & Caggiano, Mariateresa & Olabi, Abdul-Ghani & Dassisti, Michele, 2022. "Battery monitoring and prognostics optimization techniques: Challenges and opportunities," Energy, Elsevier, vol. 255(C).
    18. Yue Zhou & Hussein Obeid & Salah Laghrouche & Mickael Hilairet & Abdesslem Djerdir, 2020. "A Disturbance Rejection Control Strategy of a Single Converter Hybrid Electrical System Integrating Battery Degradation," Energies, MDPI, vol. 13(11), pages 1-19, June.
    19. Che, Yunhong & Deng, Zhongwei & Li, Penghua & Tang, Xiaolin & Khosravinia, Kavian & Lin, Xianke & Hu, Xiaosong, 2022. "State of health prognostics for series battery packs: A universal deep learning method," Energy, Elsevier, vol. 238(PB).
    20. Yang, Jufeng & Li, Xin & Sun, Xiaodong & Cai, Yingfeng & Mi, Chris, 2023. "An efficient and robust method for lithium-ion battery capacity estimation using constant-voltage charging time," Energy, Elsevier, vol. 263(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:15:p:3401-:d:1210268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.