IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i1p135-d309748.html
   My bibliography  Save this article

A New Three-Parameter Exponential Distribution with Variable Shapes for the Hazard Rate: Estimation and Applications

Author

Listed:
  • Ahmed Z. Afify

    (Department of Statistics, Mathematics and Insurance, Benha University, Benha 13511, Egypt)

  • Osama Abdo Mohamed

    (Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44511, Egypt)

Abstract

In this paper, we study a new flexible three-parameter exponential distribution called the extended odd Weibull exponential distribution, which can have constant, decreasing, increasing, bathtub, upside-down bathtub and reversed-J shaped hazard rates, and right-skewed, left-skewed, symmetrical, and reversed-J shaped densities. Some mathematical properties of the proposed distribution are derived. The model parameters are estimated via eight frequentist estimation methods called, the maximum likelihood estimators, least squares and weighted least-squares estimators, maximum product of spacing estimators, Cramér-von Mises estimators, percentiles estimators, and Anderson-Darling and right-tail Anderson-Darling estimators. Extensive simulations are conducted to compare the performance of these estimation methods for small and large samples. Four practical data sets from the fields of medicine, engineering, and reliability are analyzed, proving the usefulness and flexibility of the proposed distribution.

Suggested Citation

  • Ahmed Z. Afify & Osama Abdo Mohamed, 2020. "A New Three-Parameter Exponential Distribution with Variable Shapes for the Hazard Rate: Estimation and Applications," Mathematics, MDPI, vol. 8(1), pages 1-17, January.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:135-:d:309748
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/1/135/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/1/135/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abbas Mahdavi & Debasis Kundu, 2017. "A new method for generating distributions with an application to exponential distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(13), pages 6543-6557, July.
    2. M. Mansoor & M. H. Tahir & Gauss M. Cordeiro & Serge B. Provost & Ayman Alzaatreh, 2019. "The Marshall-Olkin logistic-exponential distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(2), pages 220-234, January.
    3. Luis Gustavo Bastos Pinho & Gauss Moutinho Cordeiro & Juvêncio Santos Nobre, 2015. "The Harris Extended Exponential Distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(16), pages 3486-3502, August.
    4. Nadarajah, Saralees & Kotz, Samuel, 2006. "The beta exponential distribution," Reliability Engineering and System Safety, Elsevier, vol. 91(6), pages 689-697.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mashail M. AL Sobhi, 2020. "The Inverse-Power Logistic-Exponential Distribution: Properties, Estimation Methods, and Application to Insurance Data," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    2. Ahmed Z. Afify & Ahmed M. Gemeay & Noor Akma Ibrahim, 2020. "The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
    3. Abdulhakim A. Al-Babtain & Mohammed K. Shakhatreh & Mazen Nassar & Ahmed Z. Afify, 2020. "A New Modified Kies Family: Properties, Estimation Under Complete and Type-II Censored Samples, and Engineering Applications," Mathematics, MDPI, vol. 8(8), pages 1-24, August.
    4. Maha A. D. Aldahlan & Ahmed Z. Afify, 2020. "The Odd Exponentiated Half-Logistic Exponential Distribution: Estimation Methods and Application to Engineering Data," Mathematics, MDPI, vol. 8(10), pages 1-26, October.
    5. Mohamed Hussein & Gauss M. Cordeiro, 2022. "A Modified Power Family of Distributions: Properties, Simulations and Applications," Mathematics, MDPI, vol. 10(7), pages 1-16, March.
    6. Jemilohun Vincent Gbenga & Ipinyomi Reuben Adeyemi, 2022. "Alpha Power Extended Inverse Weibull Poisson Distribution: Properties, Inference, and Applications to lifetime data," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 11(1), pages 1-10, March.
    7. Mahmoud Aldeni & Carl Lee & Felix Famoye, 2017. "Families of distributions arising from the quantile of generalized lambda distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-18, December.
    8. Hadeel S Klakattawi, 2022. "Survival analysis of cancer patients using a new extended Weibull distribution," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-20, February.
    9. A. A. Ogunde & S. T. Fayose & B. Ajayi & D. O. Omosigho, 2020. "Properties, Inference and Applications of Alpha Power Extended Inverted Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-90, November.
    10. Ali Genç, 2013. "A skew extension of the slash distribution via beta-normal distribution," Statistical Papers, Springer, vol. 54(2), pages 427-442, May.
    11. Abdus Saboor & Muhammad Nauman Khan & Gauss M. Cordeiro & Marcelino A. R. Pascoa & Juliano Bortolini & Shahid Mubeen, 2019. "Modified beta modified-Weibull distribution," Computational Statistics, Springer, vol. 34(1), pages 173-199, March.
    12. Alexander, Carol & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Sarabia, José María, 2012. "Generalized beta-generated distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1880-1897.
    13. Gauss Cordeiro & Elizabeth Hashimoto & Edwin Ortega & Marcelino Pascoa, 2012. "The McDonald extended distribution: properties and applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 409-433, July.
    14. Sajid Hussain & Mahmood Ul Hassan & Muhammad Sajid Rashid & Rashid Ahmed, 2023. "The Exponentiated Power Alpha Index Generalized Family of Distributions: Properties and Applications," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    15. Gauss M. Cordeiro & Giovana O. Silva & Edwin M. M. Ortega, 2016. "An extended-G geometric family," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.
    16. Yaoting Yang & Weizhong Tian & Tingting Tong, 2021. "Generalized Mixtures of Exponential Distribution and Associated Inference," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
    17. Showkat Ahmad Lone & Tabassum Naz Sindhu & Marwa K. H. Hassan & Tahani A. Abushal & Sadia Anwar & Anum Shafiq, 2023. "Theoretical Structure and Applications of a Newly Enhanced Gumbel Type II Model," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    18. Zakeia A. Al-saiary & Rana A. Bakoban & Areej A. Al-zahrani, 2019. "Characterizations of the Beta Kumaraswamy Exponential Distribution," Mathematics, MDPI, vol. 8(1), pages 1-12, December.
    19. Refah Alotaibi & Mazen Nassar & Hoda Rezk & Ahmed Elshahhat, 2022. "Inferences and Engineering Applications of Alpha Power Weibull Distribution Using Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(16), pages 1-21, August.
    20. Rasool Roozegar & Saralees Nadarajah & Eisa Mahmoudi, 2022. "The Power Series Exponential Power Series Distributions with Applications to Failure Data Sets," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 44-78, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:135-:d:309748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.