IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v102y2017icp210-217.html
   My bibliography  Save this article

Beyond monofractional kinetics

Author

Listed:
  • Sandev, Trifce
  • Sokolov, Igor M.
  • Metzler, Ralf
  • Chechkin, Aleksei

Abstract

We discuss generalized integro-differential diffusion equations whose integral kernels are not of a simple power law form, and thus these equations themselves do not belong to the family of fractional diffusion equations exhibiting a monoscaling behavior. They instead generate a broad class of anomalous nonscaling patterns, which correspond either to crossovers between different power laws, or to a non-power-law behavior as exemplified by the logarithmic growth of the width of the distribution. We consider normal and modified forms of these generalized diffusion equations and provide a brief discussion of three generic types of integral kernels for each form, namely, distributed order, truncated power law and truncated distributed order kernels. For each of the cases considered we prove the non-negativity of the solution of the corresponding generalized diffusion equation and calculate the mean squared displacement.

Suggested Citation

  • Sandev, Trifce & Sokolov, Igor M. & Metzler, Ralf & Chechkin, Aleksei, 2017. "Beyond monofractional kinetics," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 210-217.
  • Handle: RePEc:eee:chsofr:v:102:y:2017:i:c:p:210-217
    DOI: 10.1016/j.chaos.2017.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917301832
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sokolov, I.M & Chechkin, A.V & Klafter, J, 2004. "Fractional diffusion equation for a power-law-truncated Lévy process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 245-251.
    2. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2006. "Stochastic model for ultraslow diffusion," Stochastic Processes and their Applications, Elsevier, vol. 116(9), pages 1215-1235, September.
    3. Liemert, André & Sandev, Trifce & Kantz, Holger, 2017. "Generalized Langevin equation with tempered memory kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 356-369.
    4. Saxena, Ram K. & Pagnini, Gianni, 2011. "Exact solutions of triple-order time-fractional differential equations for anomalous relaxation and diffusion I: The accelerating case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 602-613.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Viktor Stojkoski & Trifce Sandev & Lasko Basnarkov & Ljupco Kocarev & Ralf Metzler, 2020. "Generalised geometric Brownian motion: Theory and applications to option pricing," Papers 2011.00312, arXiv.org.
    2. Wang, Zhaoyang & Lin, Ping & Wang, Erhui, 2021. "Modeling multiple anomalous diffusion behaviors on comb-like structures," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    3. Trifce Sandev, 2017. "Generalized Langevin Equation and the Prabhakar Derivative," Mathematics, MDPI, vol. 5(4), pages 1-11, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Veillette, Mark & Taqqu, Murad S., 2010. "Using differential equations to obtain joint moments of first-passage times of increasing Lévy processes," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 697-705, April.
    2. Lele Yuan & Kewei Liang & Huidi Wang, 2023. "Solving Inverse Problem of Distributed-Order Time-Fractional Diffusion Equations Using Boundary Observations and L 2 Regularization," Mathematics, MDPI, vol. 11(14), pages 1-20, July.
    3. Magdziarz, Marcin, 2009. "Stochastic representation of subdiffusion processes with time-dependent drift," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3238-3252, October.
    4. Yu, Qiang & Turner, Ian & Liu, Fawang & Vegh, Viktor, 2022. "The application of the distributed-order time fractional Bloch model to magnetic resonance imaging," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    5. Maike A. F. dos Santos, 2019. "Mittag–Leffler Memory Kernel in Lévy Flights," Mathematics, MDPI, vol. 7(9), pages 1-13, August.
    6. Meerschaert, Mark M. & Nane, Erkan & Xiao, Yimin, 2013. "Fractal dimension results for continuous time random walks," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1083-1093.
    7. Awad, Emad, 2019. "On the time-fractional Cattaneo equation of distributed order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 210-233.
    8. Beghin, Luisa, 2018. "Fractional diffusion-type equations with exponential and logarithmic differential operators," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2427-2447.
    9. Cartea, Álvaro & del-Castillo-Negrete, Diego, 2007. "Fractional diffusion models of option prices in markets with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 749-763.
    10. Garanina, O.S. & Romanovsky, M.Yu., 2015. "New multi-parametric analytical approximations of exponential distribution with power law tails for new cars sells and other applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 1-9.
    11. Sebastian, Orzeł & Agnieszka, Wyłomańska, 2010. "Calibration of the subdiffusive arithmetic Brownian motion with tempered stable waiting-times," MPRA Paper 28593, University Library of Munich, Germany.
    12. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2006. "Stochastic model for ultraslow diffusion," Stochastic Processes and their Applications, Elsevier, vol. 116(9), pages 1215-1235, September.
    13. Romanovsky, M.Yu. & Vidov, P.V., 2011. "Analytical representation of stock and stock-indexes returns: Non-Gaussian random walks with various jump laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3794-3805.
    14. dos Santos, Maike A.F., 2019. "Analytic approaches of the anomalous diffusion: A review," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 86-96.
    15. Meerschaert, Mark M. & Toaldo, Bruno, 2019. "Relaxation patterns and semi-Markov dynamics," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2850-2879.
    16. Choe, Geon Ho & Lee, Dong Min, 2016. "Numerical computation of hitting time distributions of increasing Lévy processes," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 289-294.
    17. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2008. "Triangular array limits for continuous time random walks," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1606-1633, September.
    18. Trifce Sandev, 2017. "Generalized Langevin Equation and the Prabhakar Derivative," Mathematics, MDPI, vol. 5(4), pages 1-11, November.
    19. Zhang, Yuxin & Li, Qian & Ding, Hengfei, 2018. "High-order numerical approximation formulas for Riemann-Liouville (Riesz) tempered fractional derivatives: construction and application (I)," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 432-443.
    20. Chakrabarty, Arijit & Meerschaert, Mark M., 2011. "Tempered stable laws as random walk limits," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 989-997, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:102:y:2017:i:c:p:210-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.