IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v128y2018i7p2427-2447.html
   My bibliography  Save this article

Fractional diffusion-type equations with exponential and logarithmic differential operators

Author

Listed:
  • Beghin, Luisa

Abstract

We deal with some extensions of the space-fractional diffusion equation, which is satisfied by the density of a stable process (see Mainardi et al. (2001)): the first equation considered here is obtained by adding an exponential differential (or shift) operator expressed in terms of the Riesz–Feller derivative. We prove that this produces a random component in the time-argument of the corresponding stable process, which is represented by the so-called Poisson process with drift. Analogously, if we add, to the space-fractional diffusion equation, a logarithmic differential operator involving the Riesz-derivative, we obtain, as a solution, the transition semigroup of a stable process subordinated by an independent gamma subordinator with drift. Finally, we show that an extension of the space-fractional diffusion equation, containing both the fractional shift operator and the Feller integral, is satisfied by the transition density of the process obtained by time-changing the stable process with an independent linear birth process with drift.

Suggested Citation

  • Beghin, Luisa, 2018. "Fractional diffusion-type equations with exponential and logarithmic differential operators," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2427-2447.
  • Handle: RePEc:eee:spapps:v:128:y:2018:i:7:p:2427-2447
    DOI: 10.1016/j.spa.2017.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414917302326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2017.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kozubowski, Tomasz J. & Panorska, Anna K., 1996. "On moments and tail behavior of v-stable random variables," Statistics & Probability Letters, Elsevier, vol. 29(4), pages 307-315, September.
    2. Meerschaert, Mark M. & Scalas, Enrico, 2006. "Coupled continuous time random walks in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 114-118.
    3. Beghin, Luisa & Orsingher, Enzo, 2009. "Iterated elastic Brownian motions and fractional diffusion equations," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1975-2003, June.
    4. Mijena, Jebessa B. & Nane, Erkan, 2015. "Space–time fractional stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 125(9), pages 3301-3326.
    5. Scalas, Enrico & Viles, Noèlia, 2014. "A functional limit theorem for stochastic integrals driven by a time-changed symmetric α-stable Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 385-410.
    6. Mohsen Alipour & Luisa Beghin & Davood Rostamy, 2015. "Generalized Fractional Nonlinear Birth Processes," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 525-540, September.
    7. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2006. "Stochastic model for ultraslow diffusion," Stochastic Processes and their Applications, Elsevier, vol. 116(9), pages 1215-1235, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gajda, Janusz & Beghin, Luisa, 2021. "Prabhakar Lévy processes," Statistics & Probability Letters, Elsevier, vol. 178(C).
    2. Zhang, Meihui & Jia, Jinhong & Zheng, Xiangcheng, 2023. "Numerical approximation and fast implementation to a generalized distributed-order time-fractional option pricing model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2008. "Triangular array limits for continuous time random walks," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1606-1633, September.
    2. Meerschaert, Mark M. & Nane, Erkan & Xiao, Yimin, 2013. "Fractal dimension results for continuous time random walks," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1083-1093.
    3. Wang, Lei & Chen, Yi-Ming, 2020. "Shifted-Chebyshev-polynomial-based numerical algorithm for fractional order polymer visco-elastic rotating beam," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    4. Veillette, Mark & Taqqu, Murad S., 2010. "Using differential equations to obtain joint moments of first-passage times of increasing Lévy processes," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 697-705, April.
    5. Choe, Geon Ho & Lee, Dong Min, 2016. "Numerical computation of hitting time distributions of increasing Lévy processes," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 289-294.
    6. Asogwa, Sunday A. & Nane, Erkan, 2017. "Intermittency fronts for space-time fractional stochastic partial differential equations in (d+1) dimensions," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1354-1374.
    7. Scalas, Enrico, 2007. "Mixtures of compound Poisson processes as models of tick-by-tick financial data," Chaos, Solitons & Fractals, Elsevier, vol. 34(1), pages 33-40.
    8. Schumer, Rina & Baeumer, Boris & Meerschaert, Mark M., 2011. "Extremal behavior of a coupled continuous time random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(3), pages 505-511.
    9. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    10. Cohen, Serge & Meerschaert, Mark M. & Rosinski, Jan, 2010. "Modeling and simulation with operator scaling," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2390-2411, December.
    11. Zhang, Hui & Jiang, Xiaoyun & Yang, Xiu, 2018. "A time-space spectral method for the time-space fractional Fokker–Planck equation and its inverse problem," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 302-318.
    12. Xin-Hui Shao & Chong-Bo Kang, 2023. "Modified DTS Iteration Methods for Spatial Fractional Diffusion Equations," Mathematics, MDPI, vol. 11(4), pages 1-10, February.
    13. Lele Yuan & Kewei Liang & Huidi Wang, 2023. "Solving Inverse Problem of Distributed-Order Time-Fractional Diffusion Equations Using Boundary Observations and L 2 Regularization," Mathematics, MDPI, vol. 11(14), pages 1-20, July.
    14. D’Ovidio, Mirko, 2012. "From Sturm–Liouville problems to fractional and anomalous diffusions," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3513-3544.
    15. Straka, P. & Henry, B.I., 2011. "Lagging and leading coupled continuous time random walks, renewal times and their joint limits," Stochastic Processes and their Applications, Elsevier, vol. 121(2), pages 324-336, February.
    16. F. G. Badía & C. Sangüesa, 2017. "Log-Convexity of Counting Processes Evaluated at a Random end of Observation Time with Applications to Queueing Models," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 647-664, June.
    17. Magdziarz, Marcin, 2009. "Stochastic representation of subdiffusion processes with time-dependent drift," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3238-3252, October.
    18. Yu, Qiang & Turner, Ian & Liu, Fawang & Vegh, Viktor, 2022. "The application of the distributed-order time fractional Bloch model to magnetic resonance imaging," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    19. Ali Balcı, Mehmet, 2017. "Time fractional capital-induced labor migration model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 91-98.
    20. McSylvester Ejighikeme Omaba & Hamdan Al Sulaimani, 2022. "On Caputo–Katugampola Fractional Stochastic Differential Equation," Mathematics, MDPI, vol. 10(12), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:128:y:2018:i:7:p:2427-2447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.