High-dimensional data clustering
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- W. J. Krzanowski & P. Jonathan & W. V. McCarthy & M. R. Thomas, 1995. "Discriminant Analysis with Singular Covariance Matrices: Methods and Applications to Spectroscopic Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(1), pages 101-115, March.
- Schott, James R., 1993. "Dimensionality reduction in quadratic discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 16(2), pages 161-174, August.
- McLachlan, G. J. & Peel, D. & Bean, R. W., 2003. "Modelling high-dimensional data by mixtures of factor analyzers," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 379-388, January.
- Bock, Hans H., 1996. "Probabilistic models in cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 23(1), pages 5-28, November.
- Fraley C. & Raftery A.E., 2002. "Model-Based Clustering, Discriminant Analysis, and Density Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 611-631, June.
- Bocci, Laura & Vicari, Donatella & Vichi, Maurizio, 2006. "A mixture model for the classification of three-way proximity data," Computational Statistics & Data Analysis, Elsevier, vol. 50(7), pages 1625-1654, April.
- Wayne DeSarbo & William Cron, 1988. "A maximum likelihood methodology for clusterwise linear regression," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 249-282, September.
- Celeux, Gilles & Govaert, Gerard, 1992. "A classification EM algorithm for clustering and two stochastic versions," Computational Statistics & Data Analysis, Elsevier, vol. 14(3), pages 315-332, October.
- Raftery, Adrian E. & Dean, Nema, 2006. "Variable Selection for Model-Based Clustering," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 168-178, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Montanari, Angela & Viroli, Cinzia, 2011. "Maximum likelihood estimation of mixtures of factor analyzers," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2712-2723, September.
- Galimberti, Giuliano & Montanari, Angela & Viroli, Cinzia, 2009. "Penalized factor mixture analysis for variable selection in clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4301-4310, October.
- Alessandro Casa & Andrea Cappozzo & Michael Fop, 2022. "Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 648-674, November.
- repec:jss:jstsof:18:i06 is not listed on IDEAS
- De la Cruz-Mesia, Rolando & Quintana, Fernando A. & Marshall, Guillermo, 2008. "Model-based clustering for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1441-1457, January.
- Christophe Biernacki & Alexandre Lourme, 2019. "Unifying data units and models in (co-)clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 7-31, March.
- McNicholas, P.D. & Murphy, T.B. & McDaid, A.F. & Frost, D., 2010. "Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 711-723, March.
- Michele Battisti & Filippo Belloc & Massimo Del Gatto, 2015.
"Unbundling Technology Adoption and tfp at the Firm Level: Do Intangibles Matter?,"
Journal of Economics & Management Strategy, Wiley Blackwell, vol. 24(2), pages 390-414, June.
- Michele Battisti & Filippo Belloc & Massimo Del Gatto, 2012. "Unbundling Technology Adoption and TFP at the Firm Level. Do Intangibles Matter?," Working Paper series 71_12, Rimini Centre for Economic Analysis.
- M. Battisti & F. Belloc & M. Del Gatto, 2012. "Unbundling technology adoption and tfp at the firm level. Do intangibles matter?," Working Paper CRENoS 201233, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Battisti, Michele & Belloc, Filippo & Del Gatto, Massimo, 2012. "Unbundling Technology Adoption and tfp at the Firm Level. Do Intangibles Matter?," Economy and Society 143128, Fondazione Eni Enrico Mattei (FEEM).
- Michele Battisti & Filippo Belloc & Massimo Del Gatto, 2012. "Unbundling Technology Adoption and tfp at the Firm Level. Do Intangibles Matter?," Working Papers 2012.98, Fondazione Eni Enrico Mattei.
- Charles Bouveyron & Camille Brunet-Saumard, 2014. "Discriminative variable selection for clustering with the sparse Fisher-EM algorithm," Computational Statistics, Springer, vol. 29(3), pages 489-513, June.
- Bouveyron, Charles & Brunet, Camille, 2012. "Theoretical and practical considerations on the convergence properties of the Fisher-EM algorithm," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 29-41.
- Francesco Dotto & Alessio Farcomeni & Luis Angel García-Escudero & Agustín Mayo-Iscar, 2017. "A fuzzy approach to robust regression clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 691-710, December.
- Zaheer Ahmed & Alberto Cassese & Gerard Breukelen & Jan Schepers, 2023. "E-ReMI: Extended Maximal Interaction Two-mode Clustering," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 298-331, July.
- Crespo Cuaresma, Jesus & Doppelhofer, Gernot, 2007.
"Nonlinearities in cross-country growth regressions: A Bayesian Averaging of Thresholds (BAT) approach,"
Journal of Macroeconomics, Elsevier, vol. 29(3), pages 541-554, September.
- Jesus Crespo Cuaresma & Gernot Doppelhofer, 2006. "Nonlinearities in Cross-Country Growth Regressions: A Bayesian Averaging of Thresholds (BAT) Approach," Vienna Economics Papers vie0608, University of Vienna, Department of Economics.
- Andrews, Jeffrey L. & McNicholas, Paul D. & Subedi, Sanjeena, 2011. "Model-based classification via mixtures of multivariate t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 520-529, January.
- Mkhadri, A. & Celeux, G. & Nasroallah, A., 1997. "Regularization in discriminant analysis: an overview," Computational Statistics & Data Analysis, Elsevier, vol. 23(3), pages 403-423, January.
- Lin, Tsung-I, 2014. "Learning from incomplete data via parameterized t mixture models through eigenvalue decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 183-195.
- Anastasios Bellas & Charles Bouveyron & Marie Cottrell & Jérôme Lacaille, 2013. "Model-based clustering of high-dimensional data streams with online mixture of probabilistic PCA," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 281-300, September.
- L. A. García‐Escudero & A. Gordaliza & R. San Martín & S. Van Aelst & R. Zamar, 2009. "Robust linear clustering," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 301-318, January.
- Coffey, N. & Hinde, J. & Holian, E., 2014. "Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 14-29.
- Wang, Wan-Lun, 2013. "Mixtures of common factor analyzers for high-dimensional data with missing information," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 120-133.
- Crespo Cuaresma, Jesus & Doppelhofer, Gernot, 2007.
"Nonlinearities in cross-country growth regressions: A Bayesian Averaging of Thresholds (BAT) approach,"
Journal of Macroeconomics, Elsevier, vol. 29(3), pages 541-554, September.
- Doppelhofer, G. & Cuaresma, J.C., 2007. "Nonlinearities in Cross-Country Growth Regressions: A Bayesian Averaging of Thresholds (BAT) Approach," Cambridge Working Papers in Economics 0706, Faculty of Economics, University of Cambridge.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2007:i:1:p:502-519. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.