IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i10p2336-d1148965.html
   My bibliography  Save this article

An Efficient Metaheuristic Algorithm for Job Shop Scheduling in a Dynamic Environment

Author

Listed:
  • Hankun Zhang

    (School of E-Business and Logistics, Beijing Technology and Business University, Beijing 100048, China)

  • Borut Buchmeister

    (Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia)

  • Xueyan Li

    (School of Management, Beijing Union University, Beijing 100101, China)

  • Robert Ojstersek

    (Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia)

Abstract

This paper proposes an Improved Multi-phase Particle Swarm Optimization (IMPPSO) to solve a Dynamic Job Shop Scheduling Problem (DJSSP) known as an non-deterministic polynomial-time hard (NP-hard) problem. A cellular neighbor network, a velocity reinitialization strategy, a randomly select sub-dimension strategy, and a constraint handling function are introduced in the IMPPSO. The IMPPSO is used to solve the Kundakcı and Kulak problem set and is compared with the original Multi-phase Particle Swarm Optimization (MPPSO) and Heuristic Kalman Algorithm (HKA). The results show that the IMPPSO has better global exploration capability and convergence. The IMPPSO has improved fitness for most of the benchmark instances of the Kundakcı and Kulak problem set, with an average improvement rate of 5.16% compared to the Genetic Algorithm-Mixed (GAM) and of 0.74% compared to HKA. The performance of the IMPPSO for solving real-world problems is verified by a case study. The high level of operational efficiency is also evaluated and demonstrated by proposing a simulation model capable of using the decision-making algorithm in a real-world environment.

Suggested Citation

  • Hankun Zhang & Borut Buchmeister & Xueyan Li & Robert Ojstersek, 2023. "An Efficient Metaheuristic Algorithm for Job Shop Scheduling in a Dynamic Environment," Mathematics, MDPI, vol. 11(10), pages 1-24, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2336-:d:1148965
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/10/2336/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/10/2336/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hankun Zhang & Borut Buchmeister & Xueyan Li & Robert Ojstersek, 2021. "Advanced Metaheuristic Method for Decision-Making in a Dynamic Job Shop Scheduling Environment," Mathematics, MDPI, vol. 9(8), pages 1-22, April.
    2. Li, Xue-yan & Li, Xue-mei & Yang, Lingrun & Li, Jing, 2018. "Dynamic route and departure time choice model based on self-adaptive reference point and reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 77-92.
    3. Xiong, Hegen & Fan, Huali & Jiang, Guozhang & Li, Gongfa, 2017. "A simulation-based study of dispatching rules in a dynamic job shop scheduling problem with batch release and extended technical precedence constraints," European Journal of Operational Research, Elsevier, vol. 257(1), pages 13-24.
    4. Ramasesh, R, 1990. "Dynamic job shop scheduling: A survey of simulation research," Omega, Elsevier, vol. 18(1), pages 43-57.
    5. Yong Zhou & Jian-jun Yang & Zhuang Huang, 2020. "Automatic design of scheduling policies for dynamic flexible job shop scheduling via surrogate-assisted cooperative co-evolution genetic programming," International Journal of Production Research, Taylor & Francis Journals, vol. 58(9), pages 2561-2580, May.
    6. Vinod, V. & Sridharan, R., 2011. "Simulation modeling and analysis of due-date assignment methods and scheduling decision rules in a dynamic job shop production system," International Journal of Production Economics, Elsevier, vol. 129(1), pages 127-146, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Binzi Xu & Kai Xu & Baolin Fei & Dengchao Huang & Liang Tao & Yan Wang, 2024. "Automatic Design of Energy-Efficient Dispatching Rules for Multi-Objective Dynamic Flexible Job Shop Scheduling Based on Dual Feature Weight Sets," Mathematics, MDPI, vol. 12(10), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hankun Zhang & Borut Buchmeister & Xueyan Li & Robert Ojstersek, 2021. "Advanced Metaheuristic Method for Decision-Making in a Dynamic Job Shop Scheduling Environment," Mathematics, MDPI, vol. 9(8), pages 1-22, April.
    2. Ferreira, Cristiane & Figueira, Gonçalo & Amorim, Pedro, 2022. "Effective and interpretable dispatching rules for dynamic job shops via guided empirical learning," Omega, Elsevier, vol. 111(C).
    3. Xiong, Hegen & Fan, Huali & Jiang, Guozhang & Li, Gongfa, 2017. "A simulation-based study of dispatching rules in a dynamic job shop scheduling problem with batch release and extended technical precedence constraints," European Journal of Operational Research, Elsevier, vol. 257(1), pages 13-24.
    4. Schaller, Jeffrey & Valente, Jorge M.S., 2020. "Minimizing total earliness and tardiness in a nowait flow shop," International Journal of Production Economics, Elsevier, vol. 224(C).
    5. Sarper, H. & Henry, M. C., 1996. "Combinatorial evaluation of six dispatching rules in a dynamic two-machine flow shop," Omega, Elsevier, vol. 24(1), pages 73-81, February.
    6. Li, Xueyan & Qiu, Heting & Yang, Yanni & Zhang, Hankun, 2022. "Differentiated fares depend on bus line and time for urban public transport network based on travelers’ day-to-day group behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    7. Chuang Wang & Pingyu Jiang, 2019. "Deep neural networks based order completion time prediction by using real-time job shop RFID data," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1303-1318, March.
    8. Pflughoeft, K. A. & Hutchinson, G. K. & Nazareth, D. L., 1996. "Intelligent decision support for flexible manufacturing: Design and implementation of a knowledge-based simulator," Omega, Elsevier, vol. 24(3), pages 347-360, June.
    9. Tanja Mlinar & Philippe Chevalier, 2016. "Pooling heterogeneous products for manufacturing environments," 4OR, Springer, vol. 14(2), pages 173-200, June.
    10. Holthaus, Oliver & Rajendran, Chandrasekharan, 1997. "Efficient dispatching rules for scheduling in a job shop," International Journal of Production Economics, Elsevier, vol. 48(1), pages 87-105, January.
    11. Al-Hinai, Nasr & ElMekkawy, T.Y., 2011. "Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm," International Journal of Production Economics, Elsevier, vol. 132(2), pages 279-291, August.
    12. Gabriel Mauricio Zambrano-Rey & Eliana María González-Neira & Gabriel Fernando Forero-Ortiz & María José Ocampo-Monsalve & Andrea Rivera-Torres, 2024. "Minimizing the expected maximum lateness for a job shop subject to stochastic machine breakdowns," Annals of Operations Research, Springer, vol. 338(1), pages 801-833, July.
    13. Sabuncuoglu, I. & Comlekci, A., 2002. "Operation-based flowtime estimation in a dynamic job shop," Omega, Elsevier, vol. 30(6), pages 423-442, December.
    14. Land, Martin & Gaalman, Gerard, 1996. "Workload control concepts in job shops A critical assessment," International Journal of Production Economics, Elsevier, vol. 46(1), pages 535-548, December.
    15. Zhang, Rui & Song, Shiji & Wu, Cheng, 2013. "A hybrid artificial bee colony algorithm for the job shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 141(1), pages 167-178.
    16. Rajendran, Chandrasekharan & Ziegler, Hans, 2001. "A performance analysis of dispatching rules and a heuristic in static flowshops with missing operations of jobs," European Journal of Operational Research, Elsevier, vol. 131(3), pages 622-634, June.
    17. Zhang, Ke & Lin, Xi & Li, Meng, 2023. "Graph attention reinforcement learning with flexible matching policies for multi-depot vehicle routing problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    18. Fernandes, Nuno Octavio & do Carmo-Silva, Silvio, 2006. "Generic POLCA--A production and materials flow control mechanism for quick response manufacturing," International Journal of Production Economics, Elsevier, vol. 104(1), pages 74-84, November.
    19. Li, Heng & Li, Zhicheng & Li, Ling X. & Hu, Bin, 2000. "A production rescheduling expert simulation system," European Journal of Operational Research, Elsevier, vol. 124(2), pages 283-293, July.
    20. A. S. Xanthopoulos & D. E. Koulouriotis, 2018. "Cluster analysis and neural network-based metamodeling of priority rules for dynamic sequencing," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 69-91, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2336-:d:1148965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.