IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v58y2020i9p2561-2580.html
   My bibliography  Save this article

Automatic design of scheduling policies for dynamic flexible job shop scheduling via surrogate-assisted cooperative co-evolution genetic programming

Author

Listed:
  • Yong Zhou
  • Jian-jun Yang
  • Zhuang Huang

Abstract

At present, a lot of references use discrete event simulation to evaluate the fitness of evolved rules, but which simulation configuration can achieve better evolutionary rules in a limited time has not been fully studied. This study proposes three types of hyper-heuristic methods for coevolution of the machine assignment rules (MAR) and job sequencing rules (JSR) to solve the DFJSP, including the cooperative coevolution genetic programming with two sub-populations (CCGP), the genetic programming with two sub-trees (TTGP) and the genetic expression programming with two sub-chromosomes (GEP). After careful parameter tuning, a surrogate simulation model is used to evaluate the fitness of evolved scheduling policies (SP). Computational simulations and comparisons demonstrate that the proposed surrogate-assisted CCGP method (CCGP-SM) shows competitive performance with other evolutionary approaches using the same computation time. Furthermore, the learning process of the proposed methods demonstrates that the surrogate-assisted GP methods help accelerating the evolutionary process and improving the quality of the evolved SPs without a significant increase in the length of SP. In addition, the evolved SPs generated by the CCGP-SM show superior performance as compared with existing rules in the literature. These results demonstrate the effectiveness and robustness of the proposed method.

Suggested Citation

  • Yong Zhou & Jian-jun Yang & Zhuang Huang, 2020. "Automatic design of scheduling policies for dynamic flexible job shop scheduling via surrogate-assisted cooperative co-evolution genetic programming," International Journal of Production Research, Taylor & Francis Journals, vol. 58(9), pages 2561-2580, May.
  • Handle: RePEc:taf:tprsxx:v:58:y:2020:i:9:p:2561-2580
    DOI: 10.1080/00207543.2019.1620362
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2019.1620362
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2019.1620362?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yannik Zeiträg & José Rui Figueira, 2023. "Automatically evolving preference-based dispatching rules for multi-objective job shop scheduling," Journal of Scheduling, Springer, vol. 26(3), pages 289-314, June.
    2. Braune, Roland & Benda, Frank & Doerner, Karl F. & Hartl, Richard F., 2022. "A genetic programming learning approach to generate dispatching rules for flexible shop scheduling problems," International Journal of Production Economics, Elsevier, vol. 243(C).
    3. Hankun Zhang & Borut Buchmeister & Xueyan Li & Robert Ojstersek, 2023. "An Efficient Metaheuristic Algorithm for Job Shop Scheduling in a Dynamic Environment," Mathematics, MDPI, vol. 11(10), pages 1-24, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:58:y:2020:i:9:p:2561-2580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.