IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v24y1996i3p347-360.html
   My bibliography  Save this article

Intelligent decision support for flexible manufacturing: Design and implementation of a knowledge-based simulator

Author

Listed:
  • Pflughoeft, K. A.
  • Hutchinson, G. K.
  • Nazareth, D. L.

Abstract

There is considerable research in decision making for the flexible manufacturing systems (FMS) domain. Much of it tends to be fragmentary due to differences in assumptions, constraints, modeling techniques and solution strategies. This paper suggests a common basis for support of FMS decision making as an attempt to alleviate these problems. It describes the architecture of an intelligent knowledge-based simulator KBSim, that provides systematic FMS research capability. KBSim is applied to an industrial FMS scheduling problem to reduce both mean flow time and tardiness when compared to several common scheduling heuristics. It is also used in a research-oriented modified job shop scheduling application. In both cases, it outperformed traditional decision making heuristics. Its efficiency, ease of use, and portability suggest that KBSim will prove useful in the automation of adaptive system control, facilitating periodic review of FMS decisions, and giving management a competitive edge.

Suggested Citation

  • Pflughoeft, K. A. & Hutchinson, G. K. & Nazareth, D. L., 1996. "Intelligent decision support for flexible manufacturing: Design and implementation of a knowledge-based simulator," Omega, Elsevier, vol. 24(3), pages 347-360, June.
  • Handle: RePEc:eee:jomega:v:24:y:1996:i:3:p:347-360
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0305-0483(96)00004-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jon K. Wilbrecht & William B. Prescott, 1969. "The Influence of Setup Time on Job Shop Performance," Management Science, INFORMS, vol. 16(4), pages 274-280, December.
    2. Stephen C. Graves, 1981. "A Review of Production Scheduling," Operations Research, INFORMS, vol. 29(4), pages 646-675, August.
    3. Ramasesh, R, 1990. "Dynamic job shop scheduling: A survey of simulation research," Omega, Elsevier, vol. 18(1), pages 43-57.
    4. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beemsterboer, Bart & Land, Martin & Teunter, Ruud & Bokhorst, Jos, 2017. "Integrating make-to-order and make-to-stock in job shop control," International Journal of Production Economics, Elsevier, vol. 185(C), pages 1-10.
    2. Miguel A. González & Juan José Palacios & Camino R. Vela & Alejandro Hernández-Arauzo, 2017. "Scatter search for minimizing weighted tardiness in a single machine scheduling with setups," Journal of Heuristics, Springer, vol. 23(2), pages 81-110, June.
    3. Seifert, Ralf W. & Morito, Susumu, 2001. "Cooperative dispatching - exploiting the flexibility of an FMS by means of incremental optimization," European Journal of Operational Research, Elsevier, vol. 129(1), pages 116-133, February.
    4. Beemsterboer, Bart & Land, Martin & Teunter, Ruud & Bokhorst, Jos, 2017. "Reprint of “Integrating make-to-order and make-to-stock in job shop control”," International Journal of Production Economics, Elsevier, vol. 194(C), pages 3-12.
    5. Berghman, Lotte & Kergosien, Yannick & Billaut, Jean-Charles, 2023. "A review on integrated scheduling and outbound vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 311(1), pages 1-23.
    6. Holthaus, Oliver & Rajendran, Chandrasekharan, 1997. "Efficient dispatching rules for scheduling in a job shop," International Journal of Production Economics, Elsevier, vol. 48(1), pages 87-105, January.
    7. Wiers, V. C. S., 1997. "A review of the applicability of OR and AI scheduling techniques in practice," Omega, Elsevier, vol. 25(2), pages 145-153, April.
    8. El Mehdi, Er Raqabi & Ilyas, Himmich & Nizar, El Hachemi & Issmaïl, El Hallaoui & François, Soumis, 2023. "Incremental LNS framework for integrated production, inventory, and vessel scheduling: Application to a global supply chain," Omega, Elsevier, vol. 116(C).
    9. Shahaboddin Shamshirband & Mohammad Shojafar & A. Hosseinabadi & Maryam Kardgar & M. Nasir & Rodina Ahmad, 2015. "OSGA: genetic-based open-shop scheduling with consideration of machine maintenance in small and medium enterprises," Annals of Operations Research, Springer, vol. 229(1), pages 743-758, June.
    10. Ilkyeong Moon & Sanghyup Lee & Moonsoo Shin & Kwangyeol Ryu, 2016. "Evolutionary resource assignment for workload-based production scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 375-388, April.
    11. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    12. Pempera, Jaroslaw & Smutnicki, Czeslaw, 2018. "Open shop cyclic scheduling," European Journal of Operational Research, Elsevier, vol. 269(2), pages 773-781.
    13. Shahvari, Omid & Logendran, Rasaratnam, 2016. "Hybrid flow shop batching and scheduling with a bi-criteria objective," International Journal of Production Economics, Elsevier, vol. 179(C), pages 239-258.
    14. Lindau, Roger A., 1997. "Automatic data capture and its impact on productivity," International Journal of Production Economics, Elsevier, vol. 52(1-2), pages 91-103, October.
    15. Fleming, Christopher L. & Griffis, Stanley E. & Bell, John E., 2013. "The effects of triangle inequality on the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 224(1), pages 1-7.
    16. Jean-Paul Watson & Laura Barbulescu & L. Darrell Whitley & Adele E. Howe, 2002. "Contrasting Structured and Random Permutation Flow-Shop Scheduling Problems: Search-Space Topology and Algorithm Performance," INFORMS Journal on Computing, INFORMS, vol. 14(2), pages 98-123, May.
    17. Nouha Nouri & Talel Ladhari, 2018. "Evolutionary multiobjective optimization for the multi-machine flow shop scheduling problem under blocking," Annals of Operations Research, Springer, vol. 267(1), pages 413-430, August.
    18. Liaw, Ching-Fang, 2000. "A hybrid genetic algorithm for the open shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 124(1), pages 28-42, July.
    19. Young-Chae Hong & Amy Cohn & Stephen Gorga & Edmond O’Brien & William Pozehl & Jennifer Zank, 2019. "Using Optimization Techniques and Multidisciplinary Collaboration to Solve a Challenging Real-World Residency Scheduling Problem," Interfaces, INFORMS, vol. 49(3), pages 201-212, May.
    20. Pan, Quan-Ke & Gao, Liang & Li, Xin-Yu & Gao, Kai-Zhou, 2017. "Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 89-112.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:24:y:1996:i:3:p:347-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.