IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i4p507-d340642.html
   My bibliography  Save this article

A db-Scan Hybrid Algorithm: An Application to the Multidimensional Knapsack Problem

Author

Listed:
  • José García

    (Escuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile
    These authors contributed equally to this work.)

  • Paola Moraga

    (Escuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile
    These authors contributed equally to this work.)

  • Matias Valenzuela

    (Escuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile
    These authors contributed equally to this work.)

  • Hernan Pinto

    (Escuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile
    These authors contributed equally to this work.)

Abstract

This article proposes a hybrid algorithm that makes use of the db-scan unsupervised learning technique to obtain binary versions of continuous swarm intelligence algorithms. These binary versions are then applied to large instances of the well-known multidimensional knapsack problem. The contribution of the db-scan operator to the binarization process is systematically studied. For this, two random operators are built that serve as a baseline for comparison. Once the contribution is established, the db-scan operator is compared with two other binarization methods that have satisfactorily solved the multidimensional knapsack problem. The first method uses the unsupervised learning technique k-means as a binarization method. The second makes use of transfer functions as a mechanism to generate binary versions. The results show that the hybrid algorithm using db-scan produces more consistent results compared to transfer function (TF) and random operators.

Suggested Citation

  • José García & Paola Moraga & Matias Valenzuela & Hernan Pinto, 2020. "A db-Scan Hybrid Algorithm: An Application to the Multidimensional Knapsack Problem," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:507-:d:340642
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/4/507/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/4/507/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Clifford C. Petersen, 1967. "Computational Experience with Variants of the Balas Algorithm Applied to the Selection of R&D Projects," Management Science, INFORMS, vol. 13(9), pages 736-750, May.
    2. Jana Ries & Patrick Beullens, 2015. "A semi-automated design of instance-based fuzzy parameter tuning for metaheuristics based on decision tree induction," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(5), pages 782-793, May.
    3. Hu Hu & Kan Yang & Lang Liu & Lyuwen Su & Zhe Yang, 2019. "Short-Term Hydropower Generation Scheduling Using an Improved Cloud Adaptive Quantum-Inspired Binary Social Spider Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2357-2379, May.
    4. Yang, Ming-Hsien, 2001. "An efficient algorithm to allocate shelf space," European Journal of Operational Research, Elsevier, vol. 131(1), pages 107-118, May.
    5. José García & Christopher Pope & Francisco Altimiras, 2017. "A Distributed -Means Segmentation Algorithm Applied to Lobesia botrana Recognition," Complexity, Hindawi, vol. 2017, pages 1-14, August.
    6. Hasan Pirkul, 1987. "A heuristic solution procedure for the multiconstraint zero‐one knapsack problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(2), pages 161-172, April.
    7. Yannick Vimont & Sylvain Boussier & Michel Vasquez, 2008. "Reduced costs propagation in an efficient implicit enumeration for the 01 multidimensional knapsack problem," Journal of Combinatorial Optimization, Springer, vol. 15(2), pages 165-178, February.
    8. Martin, Simon & Ouelhadj, Djamila & Beullens, Patrick & Ozcan, Ender & Juan, Angel A. & Burke, Edmund K., 2016. "A multi-agent based cooperative approach to scheduling and routing," European Journal of Operational Research, Elsevier, vol. 254(1), pages 169-178.
    9. Renata Mansini & M. Grazia Speranza, 2012. "CORAL: An Exact Algorithm for the Multidimensional Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 399-415, August.
    10. Broderick Crawford & Ricardo Soto & Gino Astorga & José García & Carlos Castro & Fernando Paredes, 2017. "Putting Continuous Metaheuristics to Work in Binary Search Spaces," Complexity, Hindawi, vol. 2017, pages 1-19, May.
    11. José García & Francisco Altimiras & Alvaro Peña & Gino Astorga & Oscar Peredo, 2018. "A Binary Cuckoo Search Big Data Algorithm Applied to Large-Scale Crew Scheduling Problems," Complexity, Hindawi, vol. 2018, pages 1-15, July.
    12. Juan, Angel A. & Faulin, Javier & Grasman, Scott E. & Rabe, Markus & Figueira, Gonçalo, 2015. "A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems," Operations Research Perspectives, Elsevier, vol. 2(C), pages 62-72.
    13. El-Ghazali Talbi, 2016. "Combining metaheuristics with mathematical programming, constraint programming and machine learning," Annals of Operations Research, Springer, vol. 240(1), pages 171-215, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José García & Victor Yepes & José V. Martí, 2020. "A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    2. José García & José V. Martí & Víctor Yepes, 2020. "The Buttressed Walls Problem: An Application of a Hybrid Clustering Particle Swarm Optimization Algorithm," Mathematics, MDPI, vol. 8(6), pages 1-22, May.
    3. José García & Gino Astorga & Víctor Yepes, 2021. "An Analysis of a KNN Perturbation Operator: An Application to the Binarization of Continuous Metaheuristics," Mathematics, MDPI, vol. 9(3), pages 1-20, January.
    4. Sabah Bushaj & İ. Esra Büyüktahtakın, 2024. "A K-means Supported Reinforcement Learning Framework to Multi-dimensional Knapsack," Journal of Global Optimization, Springer, vol. 89(3), pages 655-685, July.
    5. José García & José Lemus-Romani & Francisco Altimiras & Broderick Crawford & Ricardo Soto & Marcelo Becerra-Rozas & Paola Moraga & Alex Paz Becerra & Alvaro Peña Fritz & Jose-Miguel Rubio & Gino Astor, 2021. "A Binary Machine Learning Cuckoo Search Algorithm Improved by a Local Search Operator for the Set-Union Knapsack Problem," Mathematics, MDPI, vol. 9(20), pages 1-19, October.
    6. Marcelo Becerra-Rozas & José Lemus-Romani & Felipe Cisternas-Caneo & Broderick Crawford & Ricardo Soto & Gino Astorga & Carlos Castro & José García, 2022. "Continuous Metaheuristics for Binary Optimization Problems: An Updated Systematic Literature Review," Mathematics, MDPI, vol. 11(1), pages 1-32, December.
    7. José Lemus-Romani & Marcelo Becerra-Rozas & Broderick Crawford & Ricardo Soto & Felipe Cisternas-Caneo & Emanuel Vega & Mauricio Castillo & Diego Tapia & Gino Astorga & Wenceslao Palma & Carlos Castro, 2021. "A Novel Learning-Based Binarization Scheme Selector for Swarm Algorithms Solving Combinatorial Problems," Mathematics, MDPI, vol. 9(22), pages 1-41, November.
    8. Yalçın Akçay & Haijun Li & Susan Xu, 2007. "Greedy algorithm for the general multidimensional knapsack problem," Annals of Operations Research, Springer, vol. 150(1), pages 17-29, March.
    9. Raka Jovanovic & Stefan Voß, 2024. "Matheuristic fixed set search applied to the multidimensional knapsack problem and the knapsack problem with forfeit sets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1329-1365, December.
    10. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Meyer, Patrick & Karimi-Mamaghan, Amir Mohammad & Talbi, El-Ghazali, 2022. "Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art," European Journal of Operational Research, Elsevier, vol. 296(2), pages 393-422.
    11. Lai, Xiangjing & Hao, Jin-Kao & Yue, Dong, 2019. "Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 35-48.
    12. Al-Shihabi, Sameh, 2021. "A Novel Core-Based Optimization Framework for Binary Integer Programs- the Multidemand Multidimesional Knapsack Problem as a Test Problem," Operations Research Perspectives, Elsevier, vol. 8(C).
    13. Setzer, Thomas & Blanc, Sebastian M., 2020. "Empirical orthogonal constraint generation for Multidimensional 0/1 Knapsack Problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 58-70.
    14. Mauricio Castillo & Ricardo Soto & Broderick Crawford & Carlos Castro & Rodrigo Olivares, 2021. "A Knowledge-Based Hybrid Approach on Particle Swarm Optimization Using Hidden Markov Models," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
    15. Noordhoek, Marije & Dullaert, Wout & Lai, David S.W. & de Leeuw, Sander, 2018. "A simulation–optimization approach for a service-constrained multi-echelon distribution network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 292-311.
    16. Hanafi, Said & Freville, Arnaud, 1998. "An efficient tabu search approach for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 659-675, April.
    17. Romauch, Martin & Hartl, Richard F., 2017. "Capacity planning for cluster tools in the semiconductor industry," International Journal of Production Economics, Elsevier, vol. 194(C), pages 167-180.
    18. Renata Mansini & M. Grazia Speranza, 2012. "CORAL: An Exact Algorithm for the Multidimensional Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 399-415, August.
    19. Bianchi-Aguiar, Teresa & Hübner, Alexander & Carravilla, Maria Antónia & Oliveira, José Fernando, 2021. "Retail shelf space planning problems: A comprehensive review and classification framework," European Journal of Operational Research, Elsevier, vol. 289(1), pages 1-16.
    20. Nasr Al-Hinai & Chefi Triki, 2020. "A two-level evolutionary algorithm for solving the petrol station replenishment problem with periodicity constraints and service choice," Annals of Operations Research, Springer, vol. 286(1), pages 325-350, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:507-:d:340642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.