IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i3p646-d1048434.html
   My bibliography  Save this article

Investigation of the Effect of the Voltage Drop and Cable Length on the Success of Starting the Line-Start Permanent Magnet Motor in the Drive of a Centrifugal Pump Unit

Author

Listed:
  • Aleksey Paramonov

    (Department of Electrical Engineering, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Safarbek Oshurbekov

    (Department of Electrical Engineering, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Vadim Kazakbaev

    (Department of Electrical Engineering, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Vladimir Prakht

    (Department of Electrical Engineering, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Vladimir Dmitrievskii

    (Department of Electrical Engineering, Ural Federal University, 620002 Yekaterinburg, Russia)

Abstract

The use of Line-Start Permanent Magnet Synchronous Motors (LSPMSM) improves the efficiency of conventional direct-on-line electric motor-driven fluid machinery such as pumps and fans. Such motors have increased efficiency compared to induction motors and do not have an excitation winding compared to classical synchronous motors with an excitation winding. However, LSPMSMs have difficulty in starting mechanisms with a high moment of inertia. This problem can be exacerbated by a reduced supply network voltage and a voltage drop on the cable. This article investigates the transients during the startup of an industrial centrifugal pump with a line-start permanent magnet synchronous motor. The simulation results showed that when the voltage on the motor terminals is reduced by 10%, the synchronization is delayed. The use of the cable also leads to a reduction in the voltage at the motor terminals in a steady state, but the time synchronization delay is more significant than that with a corresponding reduction in the supply voltage. The considered simulation example shows that the line-start permanent magnet synchronous motor has no problems with starting the pumping unit, even with a reduced supply voltage. The conclusions of this paper support a wider use of energy-efficient electric motors and can be used when selecting an electric motor to drive a centrifugal pump.

Suggested Citation

  • Aleksey Paramonov & Safarbek Oshurbekov & Vadim Kazakbaev & Vladimir Prakht & Vladimir Dmitrievskii, 2023. "Investigation of the Effect of the Voltage Drop and Cable Length on the Success of Starting the Line-Start Permanent Magnet Motor in the Drive of a Centrifugal Pump Unit," Mathematics, MDPI, vol. 11(3), pages 1-18, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:646-:d:1048434
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/3/646/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/3/646/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sheng-Ching Wang & Yu-Cheng Nien & San-Ming Huang, 2022. "Multi-Objective Optimization Design and Analysis of V-Shape Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 15(10), pages 1-16, May.
    2. Vadim Kazakbaev & Aleksey Paramonov & Vladimir Dmitrievskii & Vladimir Prakht & Victor Goman, 2022. "Indirect Efficiency Measurement Method for Line-Start Permanent Magnet Synchronous Motors," Mathematics, MDPI, vol. 10(7), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wojciech Szelag & Cezary Jedryczka & Mariusz Baranski, 2024. "A New Method of Reducing the Inrush Current and Improving the Starting Performance of a Line-Start Permanent-Magnet Synchronous Motor," Energies, MDPI, vol. 17(5), pages 1-20, February.
    2. Richard Pravin Antony & Pongiannan Rakkiya Goundar Komarasamy & Narayanamoorthi Rajamanickam & Roobaea Alroobaea & Yasser Aboelmagd, 2024. "Optimal Rotor Design and Analysis of Energy-Efficient Brushless DC Motor-Driven Centrifugal Monoset Pump for Agriculture Applications," Energies, MDPI, vol. 17(10), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyun-Jong Park & Hyeon-Bin Hong & Ki-Doek Lee, 2022. "A Study on a Design Considering the Transient State of a Line-Start Permanent Magnet Synchronous Motor Satisfying the Requirements of the IE4 Efficiency Class," Energies, MDPI, vol. 15(24), pages 1-14, December.
    2. Changchuang Huang & Baoquan Kou & Xiaokun Zhao & Xu Niu & Lu Zhang, 2022. "Multi-Objective Optimization Design of a Stator Coreless Multidisc Axial Flux Permanent Magnet Motor," Energies, MDPI, vol. 15(13), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:646-:d:1048434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.