IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v34y2009i11p1755-1763.html
   My bibliography  Save this article

Line start permanent magnet synchronous motors: Challenges and opportunities

Author

Listed:
  • Hassanpour Isfahani, Arash
  • Vaez-Zadeh, Sadegh

Abstract

Future energy challenges, likewise the environmental crises such as fossil fuel emissions and global warming urge the world to focus on energy saving programs more than ever. An effective way to face these challenges is to improve electric motors efficiency as one of the greatest energy consumption apparatuses in the world. Induction motors constitute, by far, the largest portion of electric motors both in terms of quantity and total power ratings among all electric motors. However, more efficient motor types gradually appear as alternatives. In this paper, line start permanent magnet motors as a powerful candidate with growing market are investigated in some details. The motor opportunities like high efficiency, high power factor and high power density are explored against the challenges associated with this motor including higher cost, extra manufacturing burden and transient and synchronization behaviors. Finally, some concluding comments and remarks are drawn for future research and manufacturing of line start permanent magnet motors.

Suggested Citation

  • Hassanpour Isfahani, Arash & Vaez-Zadeh, Sadegh, 2009. "Line start permanent magnet synchronous motors: Challenges and opportunities," Energy, Elsevier, vol. 34(11), pages 1755-1763.
  • Handle: RePEc:eee:energy:v:34:y:2009:i:11:p:1755-1763
    DOI: 10.1016/j.energy.2009.04.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209001303
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.04.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akbaba, Mehmet, 1999. "Energy conservation by using energy efficient electric motors," Applied Energy, Elsevier, vol. 64(1-4), pages 149-158, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mustafa Tumbek & Selami Kesler, 2019. "Design and Implementation of a Low Power Outer-Rotor Line-Start Permanent-Magnet Synchronous Motor for Ultra-Light Electric Vehicles," Energies, MDPI, vol. 12(16), pages 1-20, August.
    2. Gustav Mörée & Mats Leijon, 2022. "Overview of Hybrid Excitation in Electrical Machines," Energies, MDPI, vol. 15(19), pages 1-38, October.
    3. Saidur, R. & Hasanuzzaman, M. & Yogeswaran, S. & Mohammed, H.A. & Hossain, M.S., 2010. "An end-use energy analysis in a Malaysian public hospital," Energy, Elsevier, vol. 35(12), pages 4780-4785.
    4. Jonathan Muñoz Tabora & Maria Emília de Lima Tostes & Edson Ortiz de Matos & Thiago Mota Soares & Ubiratan Holanda Bezerra, 2020. "Voltage Harmonic Impacts on Electric Motors: A Comparison between IE2, IE3 and IE4 Induction Motor Classes," Energies, MDPI, vol. 13(13), pages 1-18, June.
    5. Phillip Schommarz & Rong-Jie Wang, 2022. "Development of a Transient Synchronization Analysis Tool for Line-Start PM Motors," Energies, MDPI, vol. 15(23), pages 1-31, December.
    6. Ibrahem Hussein & Zakariya Al-Hamouz & M. A. Abido & Abdulaziz Milhem, 2018. "On the Mathematical Modeling of Line-Start Permanent Magnet Synchronous Motors under Static Eccentricity," Energies, MDPI, vol. 11(1), pages 1-17, January.
    7. Ma, Shaohua & Wang, Shuli & Zhang, Chengning & Zhang, Shuo, 2017. "A method to improve the efficiency of an electric aircraft propulsion system," Energy, Elsevier, vol. 140(P1), pages 436-443.
    8. Hasanuzzaman, M. & Rahim, N.A. & Saidur, R. & Kazi, S.N., 2011. "Energy savings and emissions reductions for rewinding and replacement of industrial motor," Energy, Elsevier, vol. 36(1), pages 233-240.
    9. Xiaoyu Liu & Qifang Lin & Weinong Fu, 2017. "Optimal Design of Permanent Magnet Arrangement in Synchronous Motors," Energies, MDPI, vol. 10(11), pages 1-16, October.
    10. Bo Yan & Xianglin Li & Yue Sun & Yingjie Tan, 2023. "End Effect Equivalence in the 2-D Finite Element Analysis of a Line-Start Permanent Magnet Synchronous Motor with Hybrid Solid Rotor," Energies, MDPI, vol. 16(19), pages 1-15, September.
    11. Arun Shankar, Vishnu Kalaiselvan & Umashankar, Subramaniam & Paramasivam, Shanmugam & Hanigovszki, Norbert, 2016. "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system," Applied Energy, Elsevier, vol. 181(C), pages 495-513.
    12. Hongbo Qiu & Yong Zhang & Kaiqiang Hu & Cunxiang Yang & Ran Yi, 2019. "The Influence of Stator Winding Turns on the Steady-State Performances of Line-Start Permanent Magnet Synchronous Motors," Energies, MDPI, vol. 12(12), pages 1-15, June.
    13. Vadim Kazakbaev & Aleksey Paramonov & Vladimir Dmitrievskii & Vladimir Prakht & Victor Goman, 2022. "Indirect Efficiency Measurement Method for Line-Start Permanent Magnet Synchronous Motors," Mathematics, MDPI, vol. 10(7), pages 1-14, March.
    14. Trianni, Andrea & Cagno, Enrico & Accordini, Davide, 2019. "Energy efficiency measures in electric motors systems: A novel classification highlighting specific implications in their adoption," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bortoni, Edson C. & Magalhães, Leonardo P. & Nogueira, Luiz A.H. & Bajay, Sérgio V. & Cassula, Agnelo M., 2020. "An assessment of energy efficient motors application by scenarios evaluation," Energy Policy, Elsevier, vol. 140(C).
    2. Thirugnanasambandam, M. & Hasanuzzaman, M. & Saidur, R. & Ali, M.B. & Rajakarunakaran, S. & Devaraj, D. & Rahim, N.A., 2011. "Analysis of electrical motors load factors and energy savings in an Indian cement industry," Energy, Elsevier, vol. 36(7), pages 4307-4314.
    3. Hosain, Md Lokman & Bel Fdhila, Rebei & Rönnberg, Kristian, 2017. "Taylor-Couette flow and transient heat transfer inside the annulus air-gap of rotating electrical machines," Applied Energy, Elsevier, vol. 207(C), pages 624-633.
    4. Saidur, R. & Rahim, N.A. & Ping, H.W. & Jahirul, M.I. & Mekhilef, S. & Masjuki, H.H., 2009. "Energy and emission analysis for industrial motors in Malaysia," Energy Policy, Elsevier, vol. 37(9), pages 3650-3658, September.
    5. Patlitzianas, Konstantinos D. & Doukas, Haris & Psarras, John, 2006. "Enhancing renewable energy in the Arab States of the Gulf: Constraints & efforts," Energy Policy, Elsevier, vol. 34(18), pages 3719-3726, December.
    6. Andrea Trianni & Davide Accordini & Enrico Cagno, 2020. "Identification and Categorization of Factors Affecting the Adoption of Energy Efficiency Measures within Compressed Air Systems," Energies, MDPI, vol. 13(19), pages 1-51, October.
    7. Doukas, Haris & Patlitzianas, Konstantinos D. & Kagiannas, Argyris G. & Psarras, John, 2006. "Renewable energy sources and rationale use of energy development in the countries of GCC: Myth or reality?," Renewable Energy, Elsevier, vol. 31(6), pages 755-770.
    8. Zuberi, M. Jibran S. & Tijdink, Anton & Patel, Martin K., 2017. "Techno-economic analysis of energy efficiency improvement in electric motor driven systems in Swiss industry," Applied Energy, Elsevier, vol. 205(C), pages 85-104.
    9. Saidur, R. & Mahlia, T.M.I., 2010. "Energy, economic and environmental benefits of using high-efficiency motors to replace standard motors for the Malaysian industries," Energy Policy, Elsevier, vol. 38(8), pages 4617-4625, August.
    10. Saidur, R. & Rahim, N.A. & Hasanuzzaman, M., 2010. "A review on compressed-air energy use and energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1135-1153, May.
    11. Saidur, R., 2010. "A review on electrical motors energy use and energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 877-898, April.
    12. Hasanuzzaman, M. & Rahim, N.A. & Saidur, R. & Kazi, S.N., 2011. "Energy savings and emissions reductions for rewinding and replacement of industrial motor," Energy, Elsevier, vol. 36(1), pages 233-240.
    13. Saidur, R., 2009. "Energy consumption, energy savings, and emission analysis in Malaysian office buildings," Energy Policy, Elsevier, vol. 37(10), pages 4104-4113, October.
    14. Burgos Payán, Manuel & Roldan Fernandez, Juan Manuel & Maza Ortega, Jose Maria & Riquelme Santos, Jesus Manuel, 2019. "Techno-economic optimal power rating of induction motors," Applied Energy, Elsevier, vol. 240(C), pages 1031-1048.
    15. Singh, Gurmeet & Anil Kumar, T.Ch. & Naikan, V.N.A., 2019. "Efficiency monitoring as a strategy for cost effective maintenance of induction motors for minimizing carbon emission and energy consumption," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 193-201.
    16. Saidur, R. & Hasanuzzaman, M. & Yogeswaran, S. & Mohammed, H.A. & Hossain, M.S., 2010. "An end-use energy analysis in a Malaysian public hospital," Energy, Elsevier, vol. 35(12), pages 4780-4785.
    17. Sreekanth, K.J., 2016. "Review on integrated strategies for energy policy planning and evaluation of GHG mitigation alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 837-850.
    18. Myeong-Hwan Hwang & Hae-Sol Lee & Se-Hyeon Yang & Hyun-Rok Cha & Sung-Jun Park, 2019. "Electromagnetic Field Analysis and Design of an Efficient Outer Rotor Inductor in the Low-Speed Section for Driving Electric Vehicles," Energies, MDPI, vol. 12(24), pages 1-19, December.
    19. Saidur, R. & Mekhilef, S., 2010. "Energy use, energy savings and emission analysis in the Malaysian rubber producing industries," Applied Energy, Elsevier, vol. 87(8), pages 2746-2758, August.
    20. Memon, Abdul Jabbar & Shaikh, Muhammad Mujtaba, 2016. "Confidence bounds for energy conservation in electric motors: An economical solution using statistical techniques," Energy, Elsevier, vol. 109(C), pages 592-601.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:34:y:2009:i:11:p:1755-1763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.