IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i16p2007-d619244.html
   My bibliography  Save this article

Dynamical Behavior Analysis of a Time-Delay SIRS-L Model in Rechargeable Wireless Sensor Networks

Author

Listed:
  • Guiyun Liu

    (School of Mechanical and Electric Engineering, Guangzhou University, Guangzhou 510006, China)

  • Junqiang Li

    (School of Mechanical and Electric Engineering, Guangzhou University, Guangzhou 510006, China)

  • Zhongwei Liang

    (School of Mechanical and Electric Engineering, Guangzhou University, Guangzhou 510006, China)

  • Zhimin Peng

    (School of Mechanical and Electric Engineering, Guangzhou University, Guangzhou 510006, China)

Abstract

The traditional SIRS virus propagation model is used to analyze the malware propagation behavior of wireless rechargeable sensor networks (WRSNs) by adding a new concept: the low-energy status nodes. The SIRS-L model has been developed in this article. Furthermore, the influence of time delay during the charging behavior of the low-energy status nodes needs to be considered. Hopf bifurcation is studied by discussing the time delay that is chosen as the bifurcation parameter. Finally, the properties of the Hopf bifurcation are explored by applying the normal form theory and the center manifold theorem.

Suggested Citation

  • Guiyun Liu & Junqiang Li & Zhongwei Liang & Zhimin Peng, 2021. "Dynamical Behavior Analysis of a Time-Delay SIRS-L Model in Rechargeable Wireless Sensor Networks," Mathematics, MDPI, vol. 9(16), pages 1-21, August.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:2007-:d:619244
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/16/2007/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/16/2007/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guiyun Liu & Baihao Peng & Xiaojing Zhong & Xuejing Lan, 2020. "Differential Games of Rechargeable Wireless Sensor Networks against Malicious Programs Based on SILRD Propagation Model," Complexity, Hindawi, vol. 2020, pages 1-13, July.
    2. Farrah Kristel Batista & Angel Martín del Rey & Araceli Queiruga-Dios, 2020. "A New Individual-Based Model to Simulate Malware Propagation in Wireless Sensor Networks," Mathematics, MDPI, vol. 8(3), pages 1-23, March.
    3. Zhu, Linhe & Guan, Gui, 2019. "Dynamical analysis of a rumor spreading model with self-discrimination and time delay in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    4. Zizhen Zhang & Yougang Wang, 2017. "Bifurcation Analysis for an SEIRS-V Model with Delays on the Transmission of Worms in a Wireless Sensor Network," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guiyun Liu & Junqiang Li & Zhongwei Liang & Zhimin Peng, 2021. "Analysis of Time-Delay Epidemic Model in Rechargeable Wireless Sensor Networks," Mathematics, MDPI, vol. 9(9), pages 1-19, April.
    2. Guiyun Liu & Jieyong Chen & Zhongwei Liang & Zhimin Peng & Junqiang Li, 2021. "Dynamical Analysis and Optimal Control for a SEIR Model Based on Virus Mutation in WSNs," Mathematics, MDPI, vol. 9(9), pages 1-16, April.
    3. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    4. Guilherme Ferraz de Arruda & Lucas G. S. Jeub & Angélica S. Mata & Francisco A. Rodrigues & Yamir Moreno, 2022. "From subcritical behavior to a correlation-induced transition in rumor models," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Javier Cifuentes-Faura & Ursula Faura-Martínez & Matilde Lafuente-Lechuga, 2022. "Mathematical Modeling and the Use of Network Models as Epidemiological Tools," Mathematics, MDPI, vol. 10(18), pages 1-14, September.
    6. Cheng, Yingying & Huo, Liang'an & Zhao, Laijun, 2022. "Stability analysis and optimal control of rumor spreading model under media coverage considering time delay and pulse vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    7. Yin, Qian & Wang, Zhishuang & Xia, Chengyi & Dehmer, Matthias & Emmert-Streib, Frank & Jin, Zhen, 2020. "A novel epidemic model considering demographics and intercity commuting on complex dynamical networks," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    8. Avinash Vijayarangan & Veena Narayanan & Vijayarangan Natarajan & Srikanth Raghavendran, 2022. "Novel Authentication Protocols Based on Quadratic Diophantine Equations," Mathematics, MDPI, vol. 10(17), pages 1-10, September.
    9. Luis Hernández-Álvarez & Juan José Bullón Pérez & Farrah Kristel Batista & Araceli Queiruga-Dios, 2022. "Security Threats and Cryptographic Protocols for Medical Wearables," Mathematics, MDPI, vol. 10(6), pages 1-17, March.
    10. Shan Yang & Shihan Liu & Kaijun Su & Jianhong Chen, 2024. "A Rumor Propagation Model Considering Media Effect and Suspicion Mechanism under Public Emergencies," Mathematics, MDPI, vol. 12(12), pages 1-23, June.
    11. Zhonggen Sun & Xin Cheng & Ruilian Zhang & Bingqing Yang, 2020. "Factors Influencing Rumour Re-Spreading in a Public Health Crisis by the Middle-Aged and Elderly Populations," IJERPH, MDPI, vol. 17(18), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:2007-:d:619244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.