IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i3p462-d739210.html
   My bibliography  Save this article

Periodic Orbits of a Mosquito Suppression Model Based on Sterile Mosquitoes

Author

Listed:
  • Zhongcai Zhu

    (Guangzhou Center for Applied Mathematics, Guangzhou University, Guangzhou 510006, China
    College of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China)

  • Yantao Shi

    (Guangzhou Center for Applied Mathematics, Guangzhou University, Guangzhou 510006, China
    College of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China)

  • Rong Yan

    (Guangzhou Center for Applied Mathematics, Guangzhou University, Guangzhou 510006, China
    College of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China)

  • Linchao Hu

    (Guangzhou Center for Applied Mathematics, Guangzhou University, Guangzhou 510006, China
    College of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China)

Abstract

In this work, we investigate the existence and stability of periodic orbits of a mosquito population suppression model based on sterile mosquitoes. The model switches between two sub-equations as the actual number of sterile mosquitoes in the wild is assumed to take two constant values alternately. Employing the Poincaré map method, we show that the model has at most two T -periodic solutions when the release amount is not sufficient to eradicate the wild mosquitoes, and then obtain some sufficient conditions for the model to admit a unique or exactly two T -periodic solutions. In particular, we observe that the model displays bistability when it admits exactly two T -periodic solutions: the origin and the larger periodic solution are asymptotically stable, and the smaller periodic solution is unstable. Finally, we give two numerical examples to support our lemmas and theorems.

Suggested Citation

  • Zhongcai Zhu & Yantao Shi & Rong Yan & Linchao Hu, 2022. "Periodic Orbits of a Mosquito Suppression Model Based on Sterile Mosquitoes," Mathematics, MDPI, vol. 10(3), pages 1-21, January.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:462-:d:739210
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/3/462/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/3/462/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emily Waltz, 2016. "US reviews plan to infect mosquitoes with bacteria to stop disease," Nature, Nature, vol. 533(7604), pages 450-451, May.
    2. A. A. Hoffmann & B. L. Montgomery & J. Popovici & I. Iturbe-Ormaetxe & P. H. Johnson & F. Muzzi & M. Greenfield & M. Durkan & Y. S. Leong & Y. Dong & H. Cook & J. Axford & A. G. Callahan & N. Kenny & , 2011. "Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission," Nature, Nature, vol. 476(7361), pages 454-457, August.
    3. Xiaoying Zheng & Dongjing Zhang & Yongjun Li & Cui Yang & Yu Wu & Xiao Liang & Yongkang Liang & Xiaoling Pan & Linchao Hu & Qiang Sun & Xiaohua Wang & Yingyang Wei & Jian Zhu & Wei Qian & Ziqiang Yan , 2019. "Incompatible and sterile insect techniques combined eliminate mosquitoes," Nature, Nature, vol. 572(7767), pages 56-61, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingtong Liu & Yuanshun Tan & Bo Zheng, 2022. "Dynamic Behavior of an Interactive Mosquito Model under Stochastic Interference," Mathematics, MDPI, vol. 10(13), pages 1-18, June.
    2. Li, Yazhi & Wang, Yan & Liu, Lili, 2023. "Optimal control of dengue vector based on a reaction–diffusion model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 250-270.
    3. Yijie Li & Zhiming Guo, 2022. "Wolbachia Invasion Dynamics by Integrodifference Equations," Mathematics, MDPI, vol. 10(22), pages 1-13, November.
    4. Lijie Chang & Yantao Shi & Bo Zheng, 2021. "Existence and Uniqueness of Nontrivial Periodic Solutions to a Discrete Switching Model," Mathematics, MDPI, vol. 9(19), pages 1-13, September.
    5. Auliya A. Suwantika & Angga P. Kautsar & Woro Supadmi & Neily Zakiyah & Rizky Abdulah & Mohammad Ali & Maarten J. Postma, 2020. "Cost-Effectiveness of Dengue Vaccination in Indonesia: Considering Integrated Programs with Wolbachia -Infected Mosquitos and Health Education," IJERPH, MDPI, vol. 17(12), pages 1-15, June.
    6. Martin Foureaux Koppensteiner & Lívia Menezes, 2024. "Maternal Dengue and Health Outcomes of Children," American Economic Journal: Applied Economics, American Economic Association, vol. 16(2), pages 530-553, April.
    7. Qiming Huang & Lijie Chang & Zhaowang Zhang & Bo Zheng, 2023. "Global Dynamics for Competition between Two Wolbachia Strains with Bidirectional Cytoplasmic Incompatibility," Mathematics, MDPI, vol. 11(7), pages 1-21, April.
    8. Dongjing Zhang & Hamidou Maiga & Yongjun Li & Mame Thierno Bakhoum & Gang Wang & Yan Sun & David Damiens & Wadaka Mamai & Nanwintoum Séverin Bimbilé Somda & Thomas Wallner & Odet Bueno-Masso & Claudia, 2024. "Mating harassment may boost the effectiveness of the sterile insect technique for Aedes mosquitoes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Turelli, Michael & Barton, Nicholas H., 2017. "Deploying dengue-suppressing Wolbachia : Robust models predict slow but effective spatial spread in Aedes aegypti," Theoretical Population Biology, Elsevier, vol. 115(C), pages 45-60.
    10. Kristina K. Gonzales & Immo A. Hansen, 2016. "Artificial Diets for Mosquitoes," IJERPH, MDPI, vol. 13(12), pages 1-13, December.
    11. Chloé Hérault & Thomas Pihl & Bruno Hudry, 2024. "Cellular sex throughout the organism underlies somatic sexual differentiation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Li Ting Soh & Zoe Ong & Kathryn Vasquez & Irene Chen & Xiaoxi Li & Weixin Niah & Chitra Panchapakesan & Anita Sheldenkar & Shuzhen Sim & Lee Ching Ng & May O. Lwin, 2021. "A Household-Based Survey to Understand Factors Influencing Awareness, Attitudes and Knowledge towards Wolbachia-Aedes Technology," IJERPH, MDPI, vol. 18(22), pages 1-16, November.
    13. Rachel Lowe & Christovam Barcellos & Patrícia Brasil & Oswaldo G. Cruz & Nildimar Alves Honório & Hannah Kuper & Marilia Sá Carvalho, 2018. "The Zika Virus Epidemic in Brazil: From Discovery to Future Implications," IJERPH, MDPI, vol. 15(1), pages 1-18, January.
    14. Ayu Rahayu & Utari Saraswati & Endah Supriyati & Dian Aruni Kumalawati & Rio Hermantara & Anwar Rovik & Edwin Widyanto Daniwijaya & Iva Fitriana & Sigit Setyawan & Riris Andono Ahmad & Dwi Satria Ward, 2019. "Prevalence and Distribution of Dengue Virus in Aedes aegypti in Yogyakarta City before Deployment of Wolbachia Infected Aedes aegypti," IJERPH, MDPI, vol. 16(10), pages 1-12, May.
    15. Tiago França Melo De Lima & Raquel Martins Lana & Tiago Garcia De Senna Carneiro & Cláudia Torres Codeço & Gabriel Souza Machado & Lucas Saraiva Ferreira & Líliam César De Castro Medeiros & Clodoveu A, 2016. "DengueME: A Tool for the Modeling and Simulation of Dengue Spatiotemporal Dynamics," IJERPH, MDPI, vol. 13(9), pages 1-21, September.
    16. Dan Wen & Limin S. Ding & Yanan Zhang & Xiaoye Li & Xing Zhang & Fei Yuan & Tongbiao Zhao & Aihua Zheng, 2022. "Suppression of flavivirus transmission from animal hosts to mosquitoes with a mosquito-delivered vaccine," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Haramboure, Marion & Labbé, Pierrick & Baldet, Thierry & Damiens, David & Gouagna, Louis Clément & Bouyer, Jérémy & Tran, Annelise, 2020. "Modelling the control of Aedes albopictus mosquitoes based on sterile males release techniques in a tropical environment," Ecological Modelling, Elsevier, vol. 424(C).
    18. Vanessa M. Macias & Johanna R. Ohm & Jason L. Rasgon, 2017. "Gene Drive for Mosquito Control: Where Did It Come from and Where Are We Headed?," IJERPH, MDPI, vol. 14(9), pages 1-30, September.
    19. Adam M. Finkel & Benjamin D. Trump & Diana Bowman & Andrew Maynard, 2018. "A “solution-focused” comparative risk assessment of conventional and synthetic biology approaches to control mosquitoes carrying the dengue fever virus," Environment Systems and Decisions, Springer, vol. 38(2), pages 177-197, June.
    20. Xiaomei Sun & Xueli Wang & Kai Shi & Xiangyang Lyu & Jian Sun & Alexander S. Raikhel & Zhen Zou, 2024. "Leucine aminopeptidase1 controls egg deposition and hatchability in male Aedes aegypti mosquitoes," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:462-:d:739210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.