IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i7p1691-d1113777.html
   My bibliography  Save this article

Global Dynamics for Competition between Two Wolbachia Strains with Bidirectional Cytoplasmic Incompatibility

Author

Listed:
  • Qiming Huang

    (College of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China)

  • Lijie Chang

    (College of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China)

  • Zhaowang Zhang

    (College of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China)

  • Bo Zheng

    (College of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China)

Abstract

Releasing Wolbachia -infected mosquitoes to suppress or replace wild vector mosquitoes has been carried out in 24 countries worldwide, showing great promise in controlling mosquitoes and mosquito-borne diseases. To face the instability of Wolbachia infection in different environments during the area-wide application, we should consider the overlapping of two Wolbachia strains. In this case, bidirectional cytoplasmic incompatibility occurs, which results in mating partners infected with exclusive Wolbachia strains producing inviable offspring. To determine the better Wolbachia candidate for release, we develop an ordinary differential equation model to study the global dynamics for competition between two Wolbachia strains. Our theoretical results on the sharp estimate of stable curves completely determine the fate of the two Wolbachia strains, which help choose appropriate strains for release.

Suggested Citation

  • Qiming Huang & Lijie Chang & Zhaowang Zhang & Bo Zheng, 2023. "Global Dynamics for Competition between Two Wolbachia Strains with Bidirectional Cytoplasmic Incompatibility," Mathematics, MDPI, vol. 11(7), pages 1-21, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1691-:d:1113777
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/7/1691/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/7/1691/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng, Bo & Yu, Jianshe & Xi, Zhiyong & Tang, Moxun, 2018. "The annual abundance of dengue and Zika vector Aedes albopictus and its stubbornness to suppression," Ecological Modelling, Elsevier, vol. 387(C), pages 38-48.
    2. Samir Bhatt & Peter W. Gething & Oliver J. Brady & Jane P. Messina & Andrew W. Farlow & Catherine L. Moyes & John M. Drake & John S. Brownstein & Anne G. Hoen & Osman Sankoh & Monica F. Myers & Dylan , 2013. "The global distribution and burden of dengue," Nature, Nature, vol. 496(7446), pages 504-507, April.
    3. T. Walker & P. H. Johnson & L. A. Moreira & I. Iturbe-Ormaetxe & F. D. Frentiu & C. J. McMeniman & Y. S. Leong & Y. Dong & J. Axford & P. Kriesner & A. L. Lloyd & S. A. Ritchie & S. L. O’Neill & A. A., 2011. "The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations," Nature, Nature, vol. 476(7361), pages 450-453, August.
    4. Xiaoying Zheng & Dongjing Zhang & Yongjun Li & Cui Yang & Yu Wu & Xiao Liang & Yongkang Liang & Xiaoling Pan & Linchao Hu & Qiang Sun & Xiaohua Wang & Yingyang Wei & Jian Zhu & Wei Qian & Ziqiang Yan , 2019. "Incompatible and sterile insect techniques combined eliminate mosquitoes," Nature, Nature, vol. 572(7767), pages 56-61, August.
    5. Hu, Linchao & Huang, Mugen & Tang, Moxun & Yu, Jianshe & Zheng, Bo, 2015. "Wolbachia spread dynamics in stochastic environments," Theoretical Population Biology, Elsevier, vol. 106(C), pages 32-44.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingtong Liu & Yuanshun Tan & Bo Zheng, 2022. "Dynamic Behavior of an Interactive Mosquito Model under Stochastic Interference," Mathematics, MDPI, vol. 10(13), pages 1-18, June.
    2. Lijie Chang & Yantao Shi & Bo Zheng, 2021. "Existence and Uniqueness of Nontrivial Periodic Solutions to a Discrete Switching Model," Mathematics, MDPI, vol. 9(19), pages 1-13, September.
    3. Auliya A. Suwantika & Angga P. Kautsar & Woro Supadmi & Neily Zakiyah & Rizky Abdulah & Mohammad Ali & Maarten J. Postma, 2020. "Cost-Effectiveness of Dengue Vaccination in Indonesia: Considering Integrated Programs with Wolbachia -Infected Mosquitos and Health Education," IJERPH, MDPI, vol. 17(12), pages 1-15, June.
    4. Tiago França Melo De Lima & Raquel Martins Lana & Tiago Garcia De Senna Carneiro & Cláudia Torres Codeço & Gabriel Souza Machado & Lucas Saraiva Ferreira & Líliam César De Castro Medeiros & Clodoveu A, 2016. "DengueME: A Tool for the Modeling and Simulation of Dengue Spatiotemporal Dynamics," IJERPH, MDPI, vol. 13(9), pages 1-21, September.
    5. Haramboure, Marion & Labbé, Pierrick & Baldet, Thierry & Damiens, David & Gouagna, Louis Clément & Bouyer, Jérémy & Tran, Annelise, 2020. "Modelling the control of Aedes albopictus mosquitoes based on sterile males release techniques in a tropical environment," Ecological Modelling, Elsevier, vol. 424(C).
    6. Dianavinnarasi, J. & Raja, R. & Alzabut, J. & Cao, J. & Niezabitowski, M. & Bagdasar, O., 2022. "Application of Caputo–Fabrizio operator to suppress the Aedes Aegypti mosquitoes via Wolbachia: An LMI approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 462-485.
    7. Sakirul Khan & Sheikh Mohammad Fazle Akbar & Takaaki Yahiro & Mamun Al Mahtab & Kazunori Kimitsuki & Takehiro Hashimoto & Akira Nishizono, 2022. "Dengue Infections during COVID-19 Period: Reflection of Reality or Elusive Data Due to Effect of Pandemic," IJERPH, MDPI, vol. 19(17), pages 1-12, August.
    8. Shengzhang Dong & George Dimopoulos, 2023. "Aedes aegypti Argonaute 2 controls arbovirus infection and host mortality," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    10. Eunha Shim, 2017. "Cost-effectiveness of dengue vaccination in Yucatán, Mexico using a dynamic dengue transmission model," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-17, April.
    11. Dominik Kiemel & Ann-Sophie Helene Kroell & Solène Denolly & Uta Haselmann & Jean-François Bonfanti & Jose Ignacio Andres & Brahma Ghosh & Peggy Geluykens & Suzanne J. F. Kaptein & Lucas Wilken & Piet, 2024. "Pan-serotype dengue virus inhibitor JNJ-A07 targets NS4A-2K-NS4B interaction with NS2B/NS3 and blocks replication organelle formation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    12. Hone-Jay Chu & Bo-Cheng Lin & Ming-Run Yu & Ta-Chien Chan, 2016. "Minimizing Spatial Variability of Healthcare Spatial Accessibility—The Case of a Dengue Fever Outbreak," IJERPH, MDPI, vol. 13(12), pages 1-11, December.
    13. Cheng-Te Lin & Yu-Sheng Huang & Lu-Wen Liao & Chung-Te Ting, 2020. "Measuring Consumer Willingness to Pay to Reduce Health Risks of Contracting Dengue Fever," IJERPH, MDPI, vol. 17(5), pages 1-15, March.
    14. Amy R. Krystosik & Andrew Curtis & A. Desiree LaBeaud & Diana M. Dávalos & Robinson Pacheco & Paola Buritica & Álvaro A. Álvarez & Madhav P. Bhatta & Jorge Humberto Rojas Palacios & Mark A. James, 2018. "Neighborhood Violence Impacts Disease Control and Surveillance: Case Study of Cali, Colombia from 2014 to 2016," IJERPH, MDPI, vol. 15(10), pages 1-20, September.
    15. Laith Hussain-Alkhateeb & Tatiana Rivera Ramírez & Axel Kroeger & Ernesto Gozzer & Silvia Runge-Ranzinger, 2021. "Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(9), pages 1-25, September.
    16. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    17. Gerhart Knerer & Christine S M Currie & Sally C Brailsford, 2020. "The economic impact and cost-effectiveness of combined vector-control and dengue vaccination strategies in Thailand: results from a dynamic transmission model," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(10), pages 1-32, October.
    18. Benjamin Lopez-Jimena & Michaël Bekaert & Mohammed Bakheit & Sieghard Frischmann & Pranav Patel & Etienne Simon-Loriere & Louis Lambrechts & Veasna Duong & Philippe Dussart & Graham Harold & Cheikh Fa, 2018. "Development and validation of four one-step real-time RT-LAMP assays for specific detection of each dengue virus serotype," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(5), pages 1-22, May.
    19. Adriana Zubieta-Zavala & Guillermo Salinas-Escudero & Adrian Ramírez-Chávez & Luis García-Valladares & Malaquias López-Cervantes & Juan Guillermo López Yescas & Luis Durán-Arenas, 2016. "Calculation of the Average Cost per Case of Dengue Fever in Mexico Using a Micro-Costing Approach," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 10(8), pages 1-14, August.
    20. Fazli Wahid & Dr.Sajjad Ali & Jan Muhammad, 2021. "Effective Sources of Information in Winter Seasonal Diseases: The Perception of Residents of District Buner, KP," Journal of Media & Communication (JMC), Ilma University, Faculty of Media & Design, vol. 1(2), pages 215-229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1691-:d:1113777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.