IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i21p4140-d964656.html
   My bibliography  Save this article

An Optimized Open Pit Mine Application for Limestone Quarry Production Scheduling to Maximize Net Present Value

Author

Listed:
  • Devendra Joshi

    (Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India)

  • Premkumar Chithaluru

    (Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India
    Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico)

  • Aman Singh

    (Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
    Higher Polytechnic School, Universidad Europea del Atlántico, C/Isabel Torres 21, 39011 Santander, Spain)

  • Arvind Yadav

    (Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India)

  • Dalia H. Elkamchouchi

    (Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

  • Jose Breñosa

    (Higher Polytechnic School, Universidad Europea del Atlántico, C/Isabel Torres 21, 39011 Santander, Spain
    Department of Project Management, Universidad Internacional Iberoamericana, Arecibo, PR 00613, USA)

  • Divya Anand

    (Higher Polytechnic School, Universidad Europea del Atlántico, C/Isabel Torres 21, 39011 Santander, Spain
    School of Computer Science and Engineering, Lovely Professional University, Punjab 144411, India)

Abstract

This study involves a working limestone mine that supplies limestone to the cement factory. The two main goals of this paper are to (a) determine how long an operating mine can continue to provide the cement plant with the quality and quantity of materials it needs, and (b) explore the viability of combining some limestone from a nearby mine with the study mine limestone to meet the cement plant’s quality and quantity goals. These objectives are accomplished by figuring out the maximum net profit for the ultimate pit limit and production sequencing of the mining blocks. The issues were resolved using a branch-and-cut based sequential integer and mixed integer programming problem. The study mine can exclusively feed the cement plant for up to 15 years, according to the data. However, it was also noted that the addition of the limestone from the neighboring mine substantially increased the mine’s life (85 years). The findings also showed that, when compared with the production planning formulation that the company is now using, the proposed approach creates 10% more profit. The suggested method also aids in determining the desired desirable quality of the limestone that will be transported from the nearby mine throughout each production stage.

Suggested Citation

  • Devendra Joshi & Premkumar Chithaluru & Aman Singh & Arvind Yadav & Dalia H. Elkamchouchi & Jose Breñosa & Divya Anand, 2022. "An Optimized Open Pit Mine Application for Limestone Quarry Production Scheduling to Maximize Net Present Value," Mathematics, MDPI, vol. 10(21), pages 1-22, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:21:p:4140-:d:964656
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/21/4140/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/21/4140/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jean-Claude Picard, 1976. "Maximal Closure of a Graph and Applications to Combinatorial Problems," Management Science, INFORMS, vol. 22(11), pages 1268-1272, July.
    2. Ramazan, Salih, 2007. "The new Fundamental Tree Algorithm for production scheduling of open pit mines," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1153-1166, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael Epstein & Marcel Goic & Andrés Weintraub & Jaime Catalán & Pablo Santibáñez & Rodolfo Urrutia & Raúl Cancino & Sergio Gaete & Augusto Aguayo & Felipe Caro, 2012. "Optimizing Long-Term Production Plans in Underground and Open-Pit Copper Mines," Operations Research, INFORMS, vol. 60(1), pages 4-17, February.
    2. Chatterjee, Snehamoy & Sethi, Manas Ranjan & Asad, Mohammad Waqar Ali, 2016. "Production phase and ultimate pit limit design under commodity price uncertainty," European Journal of Operational Research, Elsevier, vol. 248(2), pages 658-667.
    3. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Cornillier, Fabien, 2020. "A new hybrid heuristic algorithm for the Precedence Constrained Production Scheduling Problem: A mining application," Omega, Elsevier, vol. 94(C).
    4. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    5. Biswas, Pritam & Sinha, Rabindra Kumar & Sen, Phalguni, 2023. "A review of state-of-the-art techniques for the determination of the optimum cut-off grade of a metalliferous deposit with a bibliometric mapping in a surface mine planning context," Resources Policy, Elsevier, vol. 83(C).
    6. King, Barry & Goycoolea, Marcos & Newman, A., 2017. "Optimizing the open pit-to-underground mining transition," European Journal of Operational Research, Elsevier, vol. 257(1), pages 297-309.
    7. Domenico Moramarco & Umutcan Salman, 2023. "Equal opportunities in many-to-one matching markets," Working Papers 649, ECINEQ, Society for the Study of Economic Inequality.
    8. Dorit S. Hochbaum, 2003. "Efficient Algorithms for the Inverse Spanning-Tree Problem," Operations Research, INFORMS, vol. 51(5), pages 785-797, October.
    9. Esmaeili, Ahmadreza & Hamidi, Jafar Khademi & Mousavi, Amin, 2023. "Determination of sublevel stoping layout using a network flow algorithm and the MRMR classification system," Resources Policy, Elsevier, vol. 80(C).
    10. Nancel-Penard, Pierre & Morales, Nelson & Cornillier, Fabien, 2022. "A recursive time aggregation-disaggregation heuristic for the multidimensional and multiperiod precedence-constrained knapsack problem: An application to the open-pit mine block sequencing problem," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1088-1099.
    11. Jianlong Wang & Weilong Wang & Yong Liu, 2024. "RETRACTED ARTICLE: Exploring the impact of clean energy interconnections on sustainable economic growth in China," Economic Change and Restructuring, Springer, vol. 57(3), pages 1-32, June.
    12. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2017. "A methodology for the large-scale multi-period precedence-constrained knapsack problem: an application in the mining industry," International Journal of Production Economics, Elsevier, vol. 193(C), pages 12-20.
    13. Whittle, D. & Brazil, M. & Grossman, P.A. & Rubinstein, J.H. & Thomas, D.A., 2018. "Combined optimisation of an open-pit mine outline and the transition depth to underground mining," European Journal of Operational Research, Elsevier, vol. 268(2), pages 624-634.
    14. W. Lambert & A. Newman, 2014. "Tailored Lagrangian Relaxation for the open pit block sequencing problem," Annals of Operations Research, Springer, vol. 222(1), pages 419-438, November.
    15. Madziwa, Lawrence & Pillalamarry, Mallikarjun & Chatterjee, Snehamoy, 2023. "Integrating stochastic mine planning model with ARDL commodity price forecasting," Resources Policy, Elsevier, vol. 85(PB).
    16. Bisera Andrić Gušavac & Selman Karagoz & Milena Popović & Dragan Pamućar & Muhammet Deveci, 2023. "Reconcilement of conflicting goals: a novel operations research-based methodology for environmental management," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7423-7460, August.
    17. Burdett, R.L. & Kozan, E., 2014. "An integrated approach for earthwork allocation, sequencing and routing," European Journal of Operational Research, Elsevier, vol. 238(3), pages 741-759.
    18. Dorit S. Hochbaum & Anna Chen, 2000. "Performance Analysis and Best Implementations of Old and New Algorithms for the Open-Pit Mining Problem," Operations Research, INFORMS, vol. 48(6), pages 894-914, December.
    19. Joseph G. Szmerekovsky & George L. Vairaktarakis, 2006. "Maximizing project cash availability," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(4), pages 272-284, June.
    20. Moreno, Eduardo & Rezakhah, Mojtaba & Newman, Alexandra & Ferreira, Felipe, 2017. "Linear models for stockpiling in open-pit mine production scheduling problems," European Journal of Operational Research, Elsevier, vol. 260(1), pages 212-221.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:21:p:4140-:d:964656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.