IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v53y2006i4p272-284.html
   My bibliography  Save this article

Maximizing project cash availability

Author

Listed:
  • Joseph G. Szmerekovsky
  • George L. Vairaktarakis

Abstract

Consider a project during the life cycle of which there are cash payouts and in‐flows. To better meet his financial commitments, the project owner would like to meet all deadlines without running out of cash. We show that the cash availability objective is similar to the total weighted flowtime used to measure work‐in‐progress performance in the scheduling and inventory control literatures. In this article we provide several specialized solution methods for the problem of minimizing total weighted flowtime in an arbitrary acyclic project network, subject to activity release times and due dates, where the activity weights may be positive or negative and represent cash in‐ and out‐flows. We describe the structure of an optimal solution and provide several efficient algorithms and their complexity based on mincost and maxflow formulations. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006

Suggested Citation

  • Joseph G. Szmerekovsky & George L. Vairaktarakis, 2006. "Maximizing project cash availability," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(4), pages 272-284, June.
  • Handle: RePEc:wly:navres:v:53:y:2006:i:4:p:272-284
    DOI: 10.1002/nav.20141
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20141
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. H. Russell, 1970. "Cash Flows in Networks," Management Science, INFORMS, vol. 16(5), pages 357-373, January.
    2. Herroelen, Willy S. & Gallens, Els, 1993. "Computational experience with an optimal procedure for the scheduling of activities to maximize the net present value of projects," European Journal of Operational Research, Elsevier, vol. 65(2), pages 274-277, March.
    3. Richard C. Grinold, 1972. "The payment scheduling problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 19(1), pages 123-136, March.
    4. Elmaghraby, Salah E. & Herroelen, Willy S., 1990. "The scheduling of activities to maximize the net present value of projects," European Journal of Operational Research, Elsevier, vol. 49(1), pages 35-49, November.
    5. Nicholas G. Hall & Marc E. Posner, 2001. "Generating Experimental Data for Computational Testing with Machine Scheduling Applications," Operations Research, INFORMS, vol. 49(6), pages 854-865, December.
    6. Sepil, Canan, 1994. "Comment on elmaghraby and herroelen's "The scheduling of activities to maximize the net present value of projects"," European Journal of Operational Research, Elsevier, vol. 73(1), pages 185-187, February.
    7. Wayne E. Smith, 1956. "Various optimizers for single‐stage production," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 59-66, March.
    8. Herroelen, Willy S. & Van Dommelen, Patrick & Demeulemeester, Erik L., 1997. "Project network models with discounted cash flows a guided tour through recent developments," European Journal of Operational Research, Elsevier, vol. 100(1), pages 97-121, July.
    9. Oya Icmeli & S. Selcuk Erenguc, 1996. "A Branch and Bound Procedure for the Resource Constrained Project Scheduling Problem with Discounted Cash Flows," Management Science, INFORMS, vol. 42(10), pages 1395-1408, October.
    10. Jean-Claude Picard, 1976. "Maximal Closure of a Graph and Applications to Combinatorial Problems," Management Science, INFORMS, vol. 22(11), pages 1268-1272, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szmerekovsky, Joseph G. & Venkateshan, Prahalad & Simonson, Peter D., 2023. "Project scheduling under the threat of catastrophic disruption," European Journal of Operational Research, Elsevier, vol. 309(2), pages 784-794.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenhui Zhao & Nicholas G. Hall & Zhixin Liu, 2020. "Project Evaluation and Selection with Task Failures," Production and Operations Management, Production and Operations Management Society, vol. 29(2), pages 428-446, February.
    2. Mika, Marek & Waligora, Grzegorz & Weglarz, Jan, 2005. "Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models," European Journal of Operational Research, Elsevier, vol. 164(3), pages 639-668, August.
    3. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    4. He, Zhengwen & Wang, Nengmin & Jia, Tao & Xu, Yu, 2009. "Simulated annealing and tabu search for multi-mode project payment scheduling," European Journal of Operational Research, Elsevier, vol. 198(3), pages 688-696, November.
    5. De Reyck, Bert & Herroelen, willy, 1998. "A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations," European Journal of Operational Research, Elsevier, vol. 111(1), pages 152-174, November.
    6. Peymankar, Mahboobeh & Davari, Morteza & Ranjbar, Mohammad, 2021. "Maximizing the expected net present value in a project with uncertain cash flows," European Journal of Operational Research, Elsevier, vol. 294(2), pages 442-452.
    7. Mario Vanhoucke & Erik Demeulemeester & Willy Herroelen, 2001. "On Maximizing the Net Present Value of a Project Under Renewable Resource Constraints," Management Science, INFORMS, vol. 47(8), pages 1113-1121, August.
    8. M. Vanhoucke, 2006. "An efficient hybrid search algorithm for various optimization problems," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/365, Ghent University, Faculty of Economics and Business Administration.
    9. Herroelen, Willy S. & Van Dommelen, Patrick & Demeulemeester, Erik L., 1997. "Project network models with discounted cash flows a guided tour through recent developments," European Journal of Operational Research, Elsevier, vol. 100(1), pages 97-121, July.
    10. Etgar, Ran & Shtub, Avraham & LeBlanc, Larry J., 1997. "Scheduling projects to maximize net present value -- the case of time-dependent, contingent cash flows," European Journal of Operational Research, Elsevier, vol. 96(1), pages 90-96, January.
    11. Bruni, Maria Elena & Hazır, Öncü, 2024. "A risk-averse distributionally robust project scheduling model to address payment delays," European Journal of Operational Research, Elsevier, vol. 318(2), pages 398-407.
    12. Boysen, Ole & Juretzka, Jan & Kimms, Alf, 1999. "Ameisen-Systeme zur kapitalwertmaximierenden Projektplanung," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 499, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    13. Thomas Schmitt & Bruce Faaland, 2004. "Scheduling recurrent construction," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(8), pages 1102-1128, December.
    14. Vanhoucke, Mario & Demeulemeester, Erik & Herroelen, Willy, 2003. "Progress payments in project scheduling problems," European Journal of Operational Research, Elsevier, vol. 148(3), pages 604-620, August.
    15. Nursel Kavlak & Gündüz Ulusoy & Funda Sivrikaya Şerifoğlu & Ş. İlker Birbil, 2009. "Client‐contractor bargaining on net present value in project scheduling with limited resources," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(2), pages 93-112, March.
    16. Wiesemann, Wolfram & Kuhn, Daniel & Rustem, Berç, 2010. "Maximizing the net present value of a project under uncertainty," European Journal of Operational Research, Elsevier, vol. 202(2), pages 356-367, April.
    17. Creemers, Stefan, 2018. "Maximizing the expected net present value of a project with phase-type distributed activity durations: An efficient globally optimal solution procedure," European Journal of Operational Research, Elsevier, vol. 267(1), pages 16-22.
    18. Nalini Dayanand & Rema Padman, 2001. "Project Contracts and Payment Schedules: The Client's Problem," Management Science, INFORMS, vol. 47(12), pages 1654-1667, December.
    19. Sobel, Matthew J. & Szmerekovsky, Joseph G. & Tilson, Vera, 2009. "Scheduling projects with stochastic activity duration to maximize expected net present value," European Journal of Operational Research, Elsevier, vol. 198(3), pages 697-705, November.
    20. He, Zhengwen & Xu, Yu, 2008. "Multi-mode project payment scheduling problems with bonus-penalty structure," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1191-1207, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:53:y:2006:i:4:p:272-284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.