IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i18p3289-d911729.html
   My bibliography  Save this article

Track Utilization Optimization Method for Arrival Yard of Marshalling Station Considering Arrival and Break-Up Coordination Operation

Author

Listed:
  • Weiya Chen

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China
    Rail Data Research and Application Key Laboratory of Hunan Province, Changsha 410075, China)

  • Weiting Yang

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China
    Rail Data Research and Application Key Laboratory of Hunan Province, Changsha 410075, China)

  • Guangdong Zhang

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

Abstract

The efficiency of track utilization is one of the important factors for train operation in marshalling stations, and it can not only affect the turnover efficiency of trains, but also determine the capacity of railway stations. This paper presents an optimization method for track utilization in the arrival yard of a marshalling station considering Arrival and Break-up Coordination Operation (ABCO). The interaction between the push operation of trains and track utilization efficiency is investigated. First, the case of crossing the running route for shunting locomotives is analyzed. Whether the shunting route crosses or not can greatly affect the duration of trains occupying tracks in the station. Then, a nonlinear integer programming model (NLPM) is established based on the above analysis. The ultimate goal is to minimize the number of crossovers of the shunting route by adding a constraint condition for ensuring traffic safety. A track assignment algorithm based on ABCO for solving the NLPM is proposed. Train operations in the downlink arrival yard of station A are simulated with the proposed method. The results after applying the optimization method show that the average duration of trains on the tracks is reduced by 49.1%, and the degree to which tracks utilization is balanced is also significantly improved. The proposed method optimizes and extends the current achievements that have been reported in the literature.

Suggested Citation

  • Weiya Chen & Weiting Yang & Guangdong Zhang, 2022. "Track Utilization Optimization Method for Arrival Yard of Marshalling Station Considering Arrival and Break-Up Coordination Operation," Mathematics, MDPI, vol. 10(18), pages 1-12, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3289-:d:911729
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/18/3289/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/18/3289/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrea D'Ariano & Francesco Corman & Dario Pacciarelli & Marco Pranzo, 2008. "Reordering and Local Rerouting Strategies to Manage Train Traffic in Real Time," Transportation Science, INFORMS, vol. 42(4), pages 405-419, November.
    2. Ziyan Feng & Chengxuan Cao & Yutong Liu & Yaling Zhou, 2018. "A Multiobjective Optimization for Train Routing at the High-Speed Railway Station Based on Tabu Search Algorithm," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-22, October.
    3. Chakroborty, Partha & Vikram, Durgesh, 2008. "Optimum assignment of trains to platforms under partial schedule compliance," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 169-184, February.
    4. Alberto Caprara & Laura Galli & Paolo Toth, 2011. "Solution of the Train Platforming Problem," Transportation Science, INFORMS, vol. 45(2), pages 246-257, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinggui Zhang & Ruihua Hu & Qiongfang Zeng & Yuhang Wang & Ya Liu & Shan Huang, 2023. "Optimal Train Platforming with Shunting Operations for Multidirectional Passenger Stations: A Case Study of Guangzhou Station," Mathematics, MDPI, vol. 11(14), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Gongyuan & Ning, Jia & Liu, Xiaobo & Nie, Yu (Marco), 2022. "Train platforming and rescheduling with flexible interlocking mechanisms: An aggregate approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    2. Jingliu Xu & Zhimei Wang & Shangjun Yao & Jiarong Xue, 2022. "Train Operations Organization in High-Speed Railway Station Considering Variable Configuration," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    3. Rajnish Kumar & Goutam Sen & Samarjit Kar & Manoj Kumar Tiwari, 2018. "Station Dispatching Problem for a Large Terminal: A Constraint Programming Approach," Interfaces, INFORMS, vol. 48(6), pages 510-528, November.
    4. Lu, Gongyuan & Nie, Yu(Marco) & Liu, Xiaobo & Li, Denghui, 2019. "Trajectory-based traffic management inside an autonomous vehicle zone," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 76-98.
    5. Zhang, Qin & Lusby, Richard Martin & Shang, Pan & Zhu, Xiaoning, 2022. "A heuristic approach to integrate train timetabling, platforming, and railway network maintenance scheduling decisions," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 210-238.
    6. Sels, P. & Vansteenwegen, P. & Dewilde, T. & Cattrysse, D. & Waquet, B. & Joubert, A., 2014. "The train platforming problem: The infrastructure management company perspective," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 55-72.
    7. Matthew E. H. Petering & Mojtaba Heydar & Dietrich R. Bergmann, 2016. "Mixed-Integer Programming for Railway Capacity Analysis and Cyclic, Combined Train Timetabling and Platforming," Transportation Science, INFORMS, vol. 50(3), pages 892-909, August.
    8. Leonardo Lamorgese & Carlo Mannino & Mauro Piacentini, 2016. "Optimal Train Dispatching by Benders’-Like Reformulation," Transportation Science, INFORMS, vol. 50(3), pages 910-925, August.
    9. Elisabeth Lübbecke & Marco E. Lübbecke & Rolf H. Möhring, 2019. "Ship Traffic Optimization for the Kiel Canal," Operations Research, INFORMS, vol. 67(3), pages 791-812, May.
    10. M. Shakibayifar & A. Sheikholeslami & F. Corman & E. Hassannayebi, 2020. "An integrated rescheduling model for minimizing train delays in the case of line blockage," Operational Research, Springer, vol. 20(1), pages 59-87, March.
    11. Wang, Dian & D’Ariano, Andrea & Zhao, Jun & Zhong, Qingwei & Peng, Qiyuan, 2022. "Integrated rolling stock deadhead routing and timetabling in urban rail transit lines," European Journal of Operational Research, Elsevier, vol. 298(2), pages 526-559.
    12. Meng, Lingyun & Zhou, Xuesong, 2011. "Robust single-track train dispatching model under a dynamic and stochastic environment: A scenario-based rolling horizon solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1080-1102, August.
    13. König, Eva & Schön, Cornelia, 2021. "Railway delay management with passenger rerouting considering train capacity constraints," European Journal of Operational Research, Elsevier, vol. 288(2), pages 450-465.
    14. Pellegrini, Paola & Marlière, Grégory & Rodriguez, Joaquin, 2014. "Optimal train routing and scheduling for managing traffic perturbations in complex junctions," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 58-80.
    15. Alberto Caprara & Laura Galli & Sebastian Stiller & Paolo Toth, 2014. "Delay-Robust Event Scheduling," Operations Research, INFORMS, vol. 62(2), pages 274-283, April.
    16. Sato, Keisuke & Fukumura, Naoto, 2012. "Real-time freight locomotive rescheduling and uncovered train detection during disruption," European Journal of Operational Research, Elsevier, vol. 221(3), pages 636-648.
    17. Wang, Dian & D’Ariano, Andrea & Zhao, Jun & Zhan, Shuguang & Peng, Qiyuan, 2024. "Joint rolling stock rotation planning and depot deadhead scheduling in complicated urban rail transit lines," European Journal of Operational Research, Elsevier, vol. 314(2), pages 665-684.
    18. Mo, Pengli & D’Ariano, Andrea & Yang, Lixing & Veelenturf, Lucas P. & Gao, Ziyou, 2021. "An exact method for the integrated optimization of subway lines operation strategies with asymmetric passenger demand and operating costs," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 283-321.
    19. Sobrie, Léon & Verschelde, Marijn & Roets, Bart, 2024. "Explainable real-time predictive analytics on employee workload in digital railway control rooms," European Journal of Operational Research, Elsevier, vol. 317(2), pages 437-448.
    20. Gao, Yuan & Kroon, Leo & Yang, Lixing & Gao, Ziyou, 2018. "Three-stage optimization method for the problem of scheduling additional trains on a high-speed rail corridor," Omega, Elsevier, vol. 80(C), pages 175-191.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3289-:d:911729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.