IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i7p2500-2510.html
   My bibliography  Save this article

Computing zonoid trimmed regions of dimension d>2

Author

Listed:
  • Mosler, Karl
  • Lange, Tatjana
  • Bazovkin, Pavel

Abstract

A probability distribution on Euclidean d-space can be described by its zonoid regions. These regions form a nested family of convex sets around the expectation, each being closed and bounded. The zonoid regions of an empirical distribution introduce an ordering of the data that has many applications in multivariate statistical analysis, e.g.cluster analysis, tests for multivariate location and scale, and risk analysis. An exact algorithm is developed to constructing the zonoid regions of a d-variate empirical distribution by their facets when d>=3. The vertices of the region and their adjacency are characterized, and a procedure is suggested by which all vertices and facets can be determined. The algorithm is available as an R-package.

Suggested Citation

  • Mosler, Karl & Lange, Tatjana & Bazovkin, Pavel, 2009. "Computing zonoid trimmed regions of dimension d>2," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2500-2510, May.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:7:p:2500-2510
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00033-4
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gleb A. Koshevoy & Karl Mosler, 2007. "Multivariate Lorenz dominance based on zonoids," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 91(1), pages 57-76, March.
    2. Ignacio Cascos & Ilya Molchanov, 2007. "Multivariate risks and depth-trimmed regions," Finance and Stochastics, Springer, vol. 11(3), pages 373-397, July.
    3. Ruts, Ida & Rousseeuw, Peter J., 1996. "Computing depth contours of bivariate point clouds," Computational Statistics & Data Analysis, Elsevier, vol. 23(1), pages 153-168, November.
    4. Lopez-Pintado, Sara & Romo, Juan, 2007. "Depth-based inference for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4957-4968, June.
    5. Peter J. Rousseeuw & Ida Ruts, 1996. "Bivariate Location Depth," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(4), pages 516-526, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wiechers, Christof, 2011. "Construction of uncertainty sets for portfolio selection problems," Discussion Papers in Econometrics and Statistics 4/11, University of Cologne, Institute of Econometrics and Statistics.
    2. Xiaohui Liu & Shihua Luo & Yijun Zuo, 2020. "Some results on the computing of Tukey’s halfspace median," Statistical Papers, Springer, vol. 61(1), pages 303-316, February.
    3. Liu, Xiaohui & Zuo, Yijun, 2015. "CompPD: A MATLAB Package for Computing Projection Depth," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 65(i02).
    4. Xiaohui Liu, 2017. "Fast implementation of the Tukey depth," Computational Statistics, Springer, vol. 32(4), pages 1395-1410, December.
    5. Zuo, Yijun, 2021. "Computation of projection regression depth and its induced median," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    6. Bazovkin, Pavel & Mosler, Karl, 2012. "An Exact Algorithm for Weighted-Mean Trimmed Regions in Any Dimension," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i13).
    7. Dyckerhoff, Rainer & Mozharovskyi, Pavlo, 2016. "Exact computation of the halfspace depth," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 19-30.
    8. Chiara GIGLIARANO & Karl MOSLER, 2009. "Measuring middle-class decline in one and many attributes," Working Papers 333, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    9. Karl Mosler, 2020. "Commentary on “From unidimensional to multidimensional inequality: a review”," METRON, Springer;Sapienza Università di Roma, vol. 78(1), pages 51-54, April.
    10. Liu, Xiaohui & Rahman, Jafer & Luo, Shihua, 2019. "Generalized and robustified empirical depths for multivariate data," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 70-79.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dyckerhoff, Rainer & Mozharovskyi, Pavlo, 2016. "Exact computation of the halfspace depth," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 19-30.
    2. Cascos, Ignacio & Ochoa, Maicol, 2021. "Expectile depth: Theory and computation for bivariate datasets," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    3. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    4. Zuo, Yijun & Lai, Shaoyong, 2011. "Exact computation of bivariate projection depth and the Stahel-Donoho estimator," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1173-1179, March.
    5. repec:cte:wsrepe:28434 is not listed on IDEAS
    6. Hamel, Andreas H. & Kostner, Daniel, 2022. "Computation of quantile sets for bivariate ordered data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    7. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2017. "Multivariate and functional classification using depth and distance," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 445-466, September.
    8. Sara López-Pintado & Ying Sun & Juan Lin & Marc Genton, 2014. "Simplicial band depth for multivariate functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 321-338, September.
    9. repec:cte:wsrepe:35465 is not listed on IDEAS
    10. Chakraborty, Biman & Chaudhuri, Probal, 1999. "A note on the robustness of multivariate medians," Statistics & Probability Letters, Elsevier, vol. 45(3), pages 269-276, November.
    11. Struyf, Anja & Rousseeuw, Peter J., 2000. "High-dimensional computation of the deepest location," Computational Statistics & Data Analysis, Elsevier, vol. 34(4), pages 415-426, October.
    12. Małgorzata Kobylińska, 2021. "Spatial Diversity of Organic Farming in Poland," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    13. Małgorzata Kobylińska, 2018. "Concept of Observation Depth Measure in the Statistical Analysis of E-Commerce Data in Enterprises," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 49, pages 515-526.
    14. Zuo, Yijun & Serfling, Robert, 2000. "Nonparametric Notions of Multivariate "Scatter Measure" and "More Scattered" Based on Statistical Depth Functions," Journal of Multivariate Analysis, Elsevier, vol. 75(1), pages 62-78, October.
    15. Struyf, Anja J. & Rousseeuw, Peter J., 1999. "Halfspace Depth and Regression Depth Characterize the Empirical Distribution," Journal of Multivariate Analysis, Elsevier, vol. 69(1), pages 135-153, April.
    16. Romanazzi, Mario, 2001. "Influence Function of Halfspace Depth," Journal of Multivariate Analysis, Elsevier, vol. 77(1), pages 138-161, April.
    17. Maicol Ochoa & Ignacio Cascos, 2022. "Data Depth and Multiple Output Regression, the Distorted M -Quantiles Approach," Mathematics, MDPI, vol. 10(18), pages 1-19, September.
    18. Zani, Sergio & Riani, Marco & Corbellini, Aldo, 1998. "Robust bivariate boxplots and multiple outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 28(3), pages 257-270, September.
    19. Xiaohui Liu & Shihua Luo & Yijun Zuo, 2020. "Some results on the computing of Tukey’s halfspace median," Statistical Papers, Springer, vol. 61(1), pages 303-316, February.
    20. Francesca Ieva & Anna Paganoni, 2015. "Discussion of “multivariate functional outlier detection” by M. Hubert, P. Rousseeuw and P. Segaert," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 217-221, July.
    21. Febrero-Bande, Manuel & González-Manteiga, Wenceslao & Prallon, Brenda & Saporito, Yuri F., 2023. "Functional classification of bitcoin addresses," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    22. Daniel Kosiorowski & Dominik Mielczarek & Jerzy. P. Rydlewski, 2017. "Forecasting of a Hierarchical Functional Time Series on Example of Macromodel for Day and Night Air Pollution in Silesia Region: A Critical Overview," Papers 1712.03797, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:7:p:2500-2510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.