Expectile depth: Theory and computation for bivariate datasets
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2021.104757
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Giorgi, Emanuele & McNeil, Alexander J., 2016. "On the computation of multivariate scenario sets for the skew-t and generalized hyperbolic families," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 205-220.
- Peter J. Rousseeuw & Ida Ruts, 1996. "Bivariate Location Depth," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(4), pages 516-526, December.
- Jones, M. C., 1994. "Expectiles and M-quantiles are quantiles," Statistics & Probability Letters, Elsevier, vol. 20(2), pages 149-153, May.
- Dyckerhoff, Rainer & Mosler, Karl, 2012. "Weighted-mean regions of a probability distribution," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 318-325.
- Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
- Johanna F. Ziegel, 2016. "Coherence And Elicitability," Mathematical Finance, Wiley Blackwell, vol. 26(4), pages 901-918, October.
- Ruts, Ida & Rousseeuw, Peter J., 1996. "Computing depth contours of bivariate point clouds," Computational Statistics & Data Analysis, Elsevier, vol. 23(1), pages 153-168, November.
- Breckling, Jens & Kokic, Philip & Lübke, Oliver, 2001. "A note on multivariate M-quantiles," Statistics & Probability Letters, Elsevier, vol. 55(1), pages 39-44, November.
- Fabio Bellini & Bernhard Klar & Alfred Müller, 2018. "Expectiles, Omega Ratios and Stochastic Ordering," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 855-873, September.
- Bellini, Fabio & Klar, Bernhard & Müller, Alfred & Rosazza Gianin, Emanuela, 2014. "Generalized quantiles as risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 41-48.
- Ignacio Cascos & Ilya Molchanov, 2007. "Multivariate risks and depth-trimmed regions," Finance and Stochastics, Springer, vol. 11(3), pages 373-397, July.
- Schnabel, Sabine K. & Eilers, Paul H.C., 2009. "Optimal expectile smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4168-4177, October.
- Klaus Herrmann & Marius Hofert & Melina Mailhot, 2017. "Multivariate Geometric Expectiles," Papers 1704.01503, arXiv.org, revised Jan 2018.
- Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
- Daouia, Abdelaati & Paindaveine, Davy, 2019. "Multivariate Expectiles, Expectile Depth and Multiple-Output Expectile Regression," TSE Working Papers 19-1022, Toulouse School of Economics (TSE), revised Feb 2023.
- Dyckerhoff, Rainer & Mosler, Karl, 2011. "Weighted-mean trimming of multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 405-421, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Maicol Ochoa & Ignacio Cascos, 2022. "Data Depth and Multiple Output Regression, the Distorted M -Quantiles Approach," Mathematics, MDPI, vol. 10(18), pages 1-19, September.
- Zaevski, Tsvetelin S. & Nedeltchev, Dragomir C., 2023. "From BASEL III to BASEL IV and beyond: Expected shortfall and expectile risk measures," International Review of Financial Analysis, Elsevier, vol. 87(C).
- repec:cte:wsrepe:35465 is not listed on IDEAS
- Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- repec:cte:wsrepe:28434 is not listed on IDEAS
- Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2017. "Extreme M-quantiles as risk measures: From L1 to Lp optimization," TSE Working Papers 17-841, Toulouse School of Economics (TSE).
- Daouia, Abdelaati & Padoan, Simone A. & Stupfler, Gilles, 2023. "Extreme expectile estimation for short-tailed data, with an application to market risk assessment," TSE Working Papers 23-1414, Toulouse School of Economics (TSE), revised May 2024.
- Balter, Anne G. & Chau, Ki Wai & Schweizer, Nikolaus, 2024. "Comparative risk aversion vs. threshold choice in the Omega ratio," Omega, Elsevier, vol. 123(C).
- C. Adam & I. Gijbels, 2022. "Local polynomial expectile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 341-378, April.
- Girard, Stéphane & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Functional estimation of extreme conditional expectiles," Econometrics and Statistics, Elsevier, vol. 21(C), pages 131-158.
- Mohammedi, Mustapha & Bouzebda, Salim & Laksaci, Ali, 2021. "The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
- Stéphane Girard & Gilles Stupfler & Antoine Usseglio‐Carleve, 2022. "Nonparametric extreme conditional expectile estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 78-115, March.
- Di Bernardino, Elena & Laloë, Thomas & Pakzad, Cambyse, 2024. "Estimation of extreme multivariate expectiles with functional covariates," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
- Beck, Nicholas & Di Bernardino, Elena & Mailhot, Mélina, 2021. "Semi-parametric estimation of multivariate extreme expectiles," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
- Daouia, Abdelaati & Padoan, Simone A. & Stupfler, Gilles, 2024.
"Extreme expectile estimation for short-tailed data,"
Journal of Econometrics, Elsevier, vol. 241(2).
- Abdelaati Daouia & Simone A. Padoan & Gilles Stupfler, 2024. "Extreme expectile estimation for short-tailed data," Post-Print hal-04672516, HAL.
- James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
- Collin Philipps, 2022. "Interpreting Expectiles," Working Papers 2022-01, Department of Economics and Geosciences, US Air Force Academy.
- Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2023.
"An expectile computation cookbook,"
TSE Working Papers
23-1458, Toulouse School of Economics (TSE).
- Abdelaati Daouia & Gilles Stupfler & Antoine Usseglio-Carleve, 2024. "An expectile computation cookbook," Post-Print hal-04524319, HAL.
- Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
- Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
- Zhang, Feipeng & Xu, Yixiong & Fan, Caiyun, 2023. "Nonparametric inference of expectile-based value-at-risk for financial time series with application to risk assessment," International Review of Financial Analysis, Elsevier, vol. 90(C).
- Bellini, Fabio & Fadina, Tolulope & Wang, Ruodu & Wei, Yunran, 2022. "Parametric measures of variability induced by risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 270-284.
- Abdelaati Daouia & Stéphane Girard & Gilles Stupfler, 2018.
"Estimation of tail risk based on extreme expectiles,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 263-292, March.
- Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2015. "Estimation of Tail Risk based on Extreme Expectiles," TSE Working Papers 15-566, Toulouse School of Economics (TSE), revised Jul 2017.
- repec:cte:wsrepe:35465 is not listed on IDEAS
- Fabio Bellini & Bernhard Klar & Alfred Müller, 2018. "Expectiles, Omega Ratios and Stochastic Ordering," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 855-873, September.
- Bellini, Fabio & Bignozzi, Valeria & Puccetti, Giovanni, 2018. "Conditional expectiles, time consistency and mixture convexity properties," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 117-123.
More about this item
Keywords
Algorithm; Bagplot; Data depth; Depth region; Expectile;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:184:y:2021:i:c:s0047259x2100035x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.