IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v45y1999i3p269-276.html
   My bibliography  Save this article

A note on the robustness of multivariate medians

Author

Listed:
  • Chakraborty, Biman
  • Chaudhuri, Probal

Abstract

In this note we investigate the extent to which some of the fundamental properties of univariate median are retained by different multivariate versions of median with special emphasis on robustness and breakdown properties. We show that transformation retransformation medians, which are affine equivariant, n1/2-consistent and asymptotically normally distributed under standard regularity conditions, can also be very robust with high breakdown points. We prove that with some appropriate adaptive choice of the transformation matrix based on a high breakdown estimate of the multivariate scatter matrix (e.g. S-estimate or minimum covariance determinant estimate), the finite sample breakdown point of a transformation retransformation median will be as high as n-1[(n-d+1)/2], where n= the sample size, d= the dimension of the data, and [x] denotes the largest integer smaller than or equal to x. This implies that as n-->[infinity], the asymptotic breakdown point of a transformation retransformation median can be made equal to 50% in any dimension just like the univariate median. We present a brief comparative study of the robustness properties of different affine equivariant multivariate medians using an illustrative example.

Suggested Citation

  • Chakraborty, Biman & Chaudhuri, Probal, 1999. "A note on the robustness of multivariate medians," Statistics & Probability Letters, Elsevier, vol. 45(3), pages 269-276, November.
  • Handle: RePEc:eee:stapro:v:45:y:1999:i:3:p:269-276
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(99)00067-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Niinimaa & H. Oja & J. Nyblom, 1992. "The Oja Bivariate Median," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(3), pages 611-617, November.
    2. Peter J. Rousseeuw & Ida Ruts, 1996. "Bivariate Location Depth," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(4), pages 516-526, December.
    3. Niinimaa, A. & Oja, H. & Tableman, Mara, 1990. "The finite-sample breakdown point of the Oja bivariate median and of the corresponding half-samples version," Statistics & Probability Letters, Elsevier, vol. 10(4), pages 325-328, September.
    4. Ruts, Ida & Rousseeuw, Peter J., 1996. "Computing depth contours of bivariate point clouds," Computational Statistics & Data Analysis, Elsevier, vol. 23(1), pages 153-168, November.
    5. Oja, Hannu, 1983. "Descriptive statistics for multivariate distributions," Statistics & Probability Letters, Elsevier, vol. 1(6), pages 327-332, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mukhopadhyay, Nitai D. & Chatterjee, Snigdhansu, 2011. "High dimensional data analysis using multivariate generalized spatial quantiles," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 768-780, April.
    2. Masse, Jean-Claude & Plante, Jean-Francois, 2003. "A Monte Carlo study of the accuracy and robustness of ten bivariate location estimators," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zuo, Yijun & Serfling, Robert, 2000. "Nonparametric Notions of Multivariate "Scatter Measure" and "More Scattered" Based on Statistical Depth Functions," Journal of Multivariate Analysis, Elsevier, vol. 75(1), pages 62-78, October.
    2. Struyf, Anja & Rousseeuw, Peter J., 2000. "High-dimensional computation of the deepest location," Computational Statistics & Data Analysis, Elsevier, vol. 34(4), pages 415-426, October.
    3. Masse, Jean-Claude & Plante, Jean-Francois, 2003. "A Monte Carlo study of the accuracy and robustness of ten bivariate location estimators," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 1-26, February.
    4. Małgorzata Kobylińska, 2018. "Concept of Observation Depth Measure in the Statistical Analysis of E-Commerce Data in Enterprises," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 49, pages 515-526.
    5. Struyf, Anja J. & Rousseeuw, Peter J., 1999. "Halfspace Depth and Regression Depth Characterize the Empirical Distribution," Journal of Multivariate Analysis, Elsevier, vol. 69(1), pages 135-153, April.
    6. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    7. Hwang, Jinsoo & Jorn, Hongsuk & Kim, Jeankyung, 2004. "On the performance of bivariate robust location estimators under contamination," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 587-601, January.
    8. Dyckerhoff, Rainer & Mozharovskyi, Pavlo, 2016. "Exact computation of the halfspace depth," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 19-30.
    9. repec:cte:wsrepe:35465 is not listed on IDEAS
    10. Małgorzata Kobylińska, 2021. "Spatial Diversity of Organic Farming in Poland," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    11. López Pintado, Sara, 2005. "Depth-based classification for functional data," DES - Working Papers. Statistics and Econometrics. WS ws055611, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Zani, Sergio & Riani, Marco & Corbellini, Aldo, 1998. "Robust bivariate boxplots and multiple outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 28(3), pages 257-270, September.
    13. repec:cte:wsrepe:28434 is not listed on IDEAS
    14. Nolan, D., 1999. "On min-max majority and deepest points," Statistics & Probability Letters, Elsevier, vol. 43(4), pages 325-333, July.
    15. Hamel, Andreas H. & Kostner, Daniel, 2022. "Computation of quantile sets for bivariate ordered data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    16. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2017. "Multivariate and functional classification using depth and distance," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 445-466, September.
    17. Jin Wang & Weihua Zhou, 2015. "Effect of kurtosis on efficiency of some multivariate medians," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(3), pages 331-348, September.
    18. Mosler, Karl & Lange, Tatjana & Bazovkin, Pavel, 2009. "Computing zonoid trimmed regions of dimension d>2," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2500-2510, May.
    19. Abellanas, Manuel & Claverol, Merce & Hurtado, Ferran, 2007. "Point set stratification and Delaunay depth," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2513-2530, February.
    20. Cascos, Ignacio & Ochoa, Maicol, 2021. "Expectile depth: Theory and computation for bivariate datasets," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    21. Romanazzi, Mario, 2001. "Influence Function of Halfspace Depth," Journal of Multivariate Analysis, Elsevier, vol. 77(1), pages 138-161, April.
    22. Maicol Ochoa & Ignacio Cascos, 2022. "Data Depth and Multiple Output Regression, the Distorted M -Quantiles Approach," Mathematics, MDPI, vol. 10(18), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:45:y:1999:i:3:p:269-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.