IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i12p2076-d839599.html
   My bibliography  Save this article

Development and Applications of Augmented Whale Optimization Algorithm

Author

Listed:
  • Khalid Abdulaziz Alnowibet

    (Statistics and Operations Research Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia)

  • Shalini Shekhawat

    (Swami Keshvanand Institute of Technology, Management & Gramothan, Jaipur 302017, Rajasthan, India)

  • Akash Saxena

    (Swami Keshvanand Institute of Technology, Management & Gramothan, Jaipur 302017, Rajasthan, India)

  • Karam M. Sallam

    (School of IT and Systems, University of Canberra, Canberra, ACT 2601, Australia)

  • Ali Wagdy Mohamed

    (Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt
    Department of Mathematics and Actuarial Science School of Sciences Engineering, The American University in Cairo, Cairo 11835, Egypt)

Abstract

Metaheuristics are proven solutions for complex optimization problems. Recently, bio-inspired metaheuristics have shown their capabilities for solving complex engineering problems. The Whale Optimization Algorithm is a popular metaheuristic, which is based on the hunting behavior of whale. For some problems, this algorithm suffers from local minima entrapment. To make WOA compatible with a number of challenging problems, two major modifications are proposed in this paper: the first one is opposition-based learning in the initialization phase, while the second is inculcation of Cauchy mutation operator in the position updating phase. The proposed variant is named the Augmented Whale Optimization Algorithm (AWOA) and tested over two benchmark suits, i.e., classical benchmark functions and the latest CEC-2017 benchmark functions for 10 dimension and 30 dimension problems. Various analyses, including convergence property analysis, boxplot analysis and Wilcoxon rank sum test analysis, show that the proposed variant possesses better exploration and exploitation capabilities. Along with this, the application of AWOA has been reported for three real-world problems of various disciplines. The results revealed that the proposed variant exhibits better optimization performance.

Suggested Citation

  • Khalid Abdulaziz Alnowibet & Shalini Shekhawat & Akash Saxena & Karam M. Sallam & Ali Wagdy Mohamed, 2022. "Development and Applications of Augmented Whale Optimization Algorithm," Mathematics, MDPI, vol. 10(12), pages 1-33, June.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:12:p:2076-:d:839599
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/12/2076/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/12/2076/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David H. Wolpert & William G. Macready, 1995. "No Free Lunch Theorems for Search," Working Papers 95-02-010, Santa Fe Institute.
    2. Oliva, Diego & Abd El Aziz, Mohamed & Ella Hassanien, Aboul, 2017. "Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm," Applied Energy, Elsevier, vol. 200(C), pages 141-154.
    3. Ali Azadeh & Seyed Mohammad Asadzadeh & Rana Jalali & Samira Hemmati, 2014. "A greedy randomised adaptive search procedure - genetic algorithm for electricity consumption estimation and optimisation in agriculture sector with random variation," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 17(3), pages 285-301.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Dong, 2023. "Preface to the Special Issue on “Recent Advances in Swarm Intelligence Algorithms and Their Applications”—Special Issue Book," Mathematics, MDPI, vol. 11(12), pages 1-4, June.
    2. Akash Saxena & Ahmad M. Alshamrani & Adel Fahad Alrasheedi & Khalid Abdulaziz Alnowibet & Ali Wagdy Mohamed, 2022. "A Hybrid Approach Based on Principal Component Analysis for Power Quality Event Classification Using Support Vector Machines," Mathematics, MDPI, vol. 10(15), pages 1-16, August.
    3. Shoyab Ali & Annapurna Bhargava & Akash Saxena & Pavan Kumar, 2023. "A Hybrid Marine Predator Sine Cosine Algorithm for Parameter Selection of Hybrid Active Power Filter," Mathematics, MDPI, vol. 11(3), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zepeng Chen & Lin Li & Xiaojing Chu & Fengfu Yin & Huaqing Li, 2024. "Multi-Objective Disassembly Depth Optimization for End-of-Life Smartphones Considering the Overall Safety of the Disassembly Process," Sustainability, MDPI, vol. 16(3), pages 1-23, January.
    2. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    3. Reem Y. Abdelghany & Salah Kamel & Hamdy M. Sultan & Ahmed Khorasy & Salah K. Elsayed & Mahrous Ahmed, 2021. "Development of an Improved Bonobo Optimizer and Its Application for Solar Cell Parameter Estimation," Sustainability, MDPI, vol. 13(7), pages 1-22, March.
    4. Jui-Sheng Chou & Dinh-Nhat Truong & Chih-Fong Tsai, 2021. "Solving Regression Problems with Intelligent Machine Learner for Engineering Informatics," Mathematics, MDPI, vol. 9(6), pages 1-25, March.
    5. Mehmet Yesilbudak, 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy," Energies, MDPI, vol. 14(18), pages 1-27, September.
    6. Chaabane Bouali & Horst Schulte & Abdelkader Mami, 2019. "A High Performance Optimizing Method for Modeling Photovoltaic Cells and Modules Array Based on Discrete Symbiosis Organism Search," Energies, MDPI, vol. 12(12), pages 1-32, June.
    7. Fei Luan & Zongyan Cai & Shuqiang Wu & Shi Qiang Liu & Yixin He, 2019. "Optimizing the Low-Carbon Flexible Job Shop Scheduling Problem with Discrete Whale Optimization Algorithm," Mathematics, MDPI, vol. 7(8), pages 1-17, August.
    8. Majid Mohammadi & Saeed Farzin & Sayed-Farhad Mousavi & Hojat Karami, 2019. "Investigation of a New Hybrid Optimization Algorithm Performance in the Optimal Operation of Multi-Reservoir Benchmark Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4767-4782, November.
    9. Sevvandi Kandanaarachchi & Mario A Munoz & Rob J Hyndman & Kate Smith-Miles, 2018. "On normalization and algorithm selection for unsupervised outlier detection," Monash Econometrics and Business Statistics Working Papers 16/18, Monash University, Department of Econometrics and Business Statistics.
    10. Kumar Jadoun, Vinay & Rahul Prashanth, G & Suhas Joshi, Siddharth & Narayanan, K. & Malik, Hasmat & García Márquez, Fausto Pedro, 2022. "Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm," Applied Energy, Elsevier, vol. 315(C).
    11. Aktaş, Dilay & Lokman, Banu & İnkaya, Tülin & Dejaegere, Gilles, 2024. "Cluster ensemble selection and consensus clustering: A multi-objective optimization approach," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1065-1077.
    12. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    13. Kamran Zolfi, 2023. "Gold rush optimizer: A new population-based metaheuristic algorithm," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(1), pages 113-150.
    14. Chen, Kui & Badji, Abderrezak & Laghrouche, Salah & Djerdir, Abdesslem, 2022. "Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm," Applied Energy, Elsevier, vol. 318(C).
    15. Nunes, H.G.G. & Pombo, J.A.N. & Mariano, S.J.P.S. & Calado, M.R.A. & Felippe de Souza, J.A.M., 2018. "A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization," Applied Energy, Elsevier, vol. 211(C), pages 774-791.
    16. William G. Macready & David H. Wolpert, 1995. "What Makes an Optimization Problem Hard?," Working Papers 95-05-046, Santa Fe Institute.
    17. Y.C. Ho & D.L. Pepyne, 2002. "Simple Explanation of the No-Free-Lunch Theorem and Its Implications," Journal of Optimization Theory and Applications, Springer, vol. 115(3), pages 549-570, December.
    18. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "A Slime Mould Algorithm Programming for Solving Single and Multi-Objective Optimal Power Flow Problems with Pareto Front Approach: A Case Study of the Iraqi Super Grid High Voltage," Energies, MDPI, vol. 15(20), pages 1-33, October.
    19. Galioto, Francesco & Battilani, Adriano, 2021. "Agro-economic simulation for day by day irrigation scheduling optimisation," Agricultural Water Management, Elsevier, vol. 248(C).
    20. Chin, Vun Jack & Salam, Zainal, 2019. "A New Three-point-based Approach for the Parameter Extraction of Photovoltaic Cells," Applied Energy, Elsevier, vol. 237(C), pages 519-533.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:12:p:2076-:d:839599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.