IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p57-d708685.html
   My bibliography  Save this article

Real Time Sustainable Power Quality Analysis of Non-Linear Load under Symmetrical Conditions

Author

Listed:
  • Pavan Babu Bandla

    (School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, India)

  • Indragandhi Vairavasundaram

    (School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, India)

  • Yuvaraja Teekaraman

    (MOBI-Mobility, Logistics and Automotive Technology Research Centre, Vrije Universiteit Brussel, 1050 Brussels, Belgium)

  • Ramya Kuppusamy

    (Department of Electrical and Electronics Engineering, Sri Sairam College of Engineering, Bangalore 562106, India)

  • Srete Nikolovski

    (Power Engineering Department, Faculty of Electrical Engineering, Computer Science and Information Technology, University of Osijek, 31000 Osijek, Croatia)

Abstract

Voltage sag is one of the most significant power quality problems in the industry and has a significant impact on induction motor safety and stability. This paper analyzes the characteristics of voltage dips in power systems and induction motors with a special emphasis on balanced dips with the help of virtual grids (regenerative grid simulator), as per IEC 61000-4-11. Three phase induction motors with 3.3 kW, 16 A coupled to a DC generator with 3.7 kW, and 7.8 A rated are considered for the test analysis. This paper aids in the development of an induction motor to achieve improved precision by taking different voltage sags into account. The experimental results benefit the design modifications of induction motors at industrial and other commercial levels of consumers regarding major power quality issues and the behavior of the induction motors. A proposed modification employing ANSYS is provided to further examine the precise performance of induction motors during sag events.

Suggested Citation

  • Pavan Babu Bandla & Indragandhi Vairavasundaram & Yuvaraja Teekaraman & Ramya Kuppusamy & Srete Nikolovski, 2021. "Real Time Sustainable Power Quality Analysis of Non-Linear Load under Symmetrical Conditions," Energies, MDPI, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:57-:d:708685
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/57/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/57/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexandre Serrano-Fontova & Pablo Casals Torrens & Ricard Bosch, 2019. "Power Quality Disturbances Assessment during Unintentional Islanding Scenarios. A Contribution to Voltage Sag Studies," Energies, MDPI, vol. 12(16), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akash Saxena & Ahmad M. Alshamrani & Adel Fahad Alrasheedi & Khalid Abdulaziz Alnowibet & Ali Wagdy Mohamed, 2022. "A Hybrid Approach Based on Principal Component Analysis for Power Quality Event Classification Using Support Vector Machines," Mathematics, MDPI, vol. 10(15), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wagner A. Vilela Junior & Antonio P. Coimbra & Gabriel A. Wainer & Joao Caetano Neto & Jose A. G. Cararo & Marcio R. C. Reis & Paulo V. Santos & Wesley P. Calixto, 2021. "Analysis and Adequacy Methodology for Voltage Violations in Distribution Power Grid," Energies, MDPI, vol. 14(14), pages 1-21, July.
    2. Mingang Tan & Chaohai Zhang & Bin Chen, 2022. "Size Estimation of Bulk Capacitor Removal Using Limited Power Quality Monitors in the Distribution Network," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    3. Juan-José González de-la-Rosa & Manuel Pérez-Donsión, 2020. "Special Issue “Analysis for Power Quality Monitoring”," Energies, MDPI, vol. 13(3), pages 1-6, January.
    4. Pau Casals-Torrens & Juan A. Martinez-Velasco & Alexandre Serrano-Fontova & Ricard Bosch, 2020. "Assessment of Unintentional Islanding Operations in Distribution Networks with Large Induction Motors," Energies, MDPI, vol. 13(2), pages 1-25, January.
    5. Jagannath Patra & Nitai Pal, 2022. "A Mathematical Approach of Voltage Sag Analysis Incorporating Bivariate Probability Distribution in a Meshed System," Energies, MDPI, vol. 15(20), pages 1-19, October.
    6. Gabriel Nicolae Popa & Angela Iagăr & Corina Maria Diniș, 2020. "Considerations on Current and Voltage Unbalance of Nonlinear Loads in Residential and Educational Sectors," Energies, MDPI, vol. 14(1), pages 1-29, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:57-:d:708685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.