IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v241y2024ics0951832023005963.html
   My bibliography  Save this article

A dynamic mission abort policy for transportation systems with stochastic dependence by deep reinforcement learning

Author

Listed:
  • Liu, Lujie
  • Yang, Jun
  • Yan, Bingxin

Abstract

The mission abort policy is considered an effective approach for managing operational risks in transportation systems, which are typically equipped with mission payloads to perform designated tasks. However, existing research mainly focuses on the impact of component failures on system survivability while neglecting situations where the system only experiences functional failures. Additionally, the stochastic dependence between components is always neglected. To address the above problems, a dynamic mission abort method is developed. First, a mission abort policy is proposed to consider the stochastic dependence and mission payload, and the specific mission abort action is determined based on the health state of components and the time in the mission. Next, to maximize the expected cumulative reward during the mission, a dynamic mission abort decision-making model is established based on the Markov decision process. Then, to address the dimensionality curse caused by a continuous state space, a customized deep reinforcement learning method is developed, where the parameter sharing technique is used to reduce the model parameters of the network. Finally, the effectiveness of the proposed method is verified through a numerical example of a reconnaissance UAV, and the superiority of the proposed method is demonstrated by comparing it with heuristic policies.

Suggested Citation

  • Liu, Lujie & Yang, Jun & Yan, Bingxin, 2024. "A dynamic mission abort policy for transportation systems with stochastic dependence by deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023005963
    DOI: 10.1016/j.ress.2023.109682
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023005963
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109682?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jia & Li, Zhigang & Bai, Guanghan & Zuo, Ming J., 2020. "An improved model for dependent competing risks considering continuous degradation and random shocks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. Zhao, Xian & Chai, Xiaofei & Sun, Jinglei & Qiu, Qingan, 2021. "Joint optimization of mission abort and component switching policies for multistate warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2018. "Optimal mission abort policy for partially repairable heterogeneous systems," European Journal of Operational Research, Elsevier, vol. 271(3), pages 818-825.
    4. Wang, Yukun & Li, Xiaopeng & Chen, Junyan & Liu, Yiliu, 2022. "A condition-based maintenance policy for multi-component systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    5. Liu, Bin & Pandey, Mahesh D. & Wang, Xiaolin & Zhao, Xiujie, 2021. "A finite-horizon condition-based maintenance policy for a two-unit system with dependent degradation processes," European Journal of Operational Research, Elsevier, vol. 295(2), pages 705-717.
    6. Zhao, Xian & Liu, Haoran & Wu, Yaguang & Qiu, Qingan, 2023. "Joint optimization of mission abort and system structure considering dynamic tasks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Yu Liu & Jian Gao & Tao Jiang & Zhiguo Zeng, 2023. "Selective maintenance and inspection optimization for partially observable systems: An interactively sequential decision framework," IISE Transactions, Taylor & Francis Journals, vol. 55(5), pages 463-479, May.
    8. Qiuzhuang Sun & Zhi-Sheng Ye & Xiaoyan Zhu, 2020. "Managing component degradation in series systems for balancing degradation through reallocation and maintenance," IISE Transactions, Taylor & Francis Journals, vol. 52(7), pages 797-810, July.
    9. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "State-based mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    10. Linkan Bian & Nagi Gebraeel, 2014. "Stochastic modeling and real-time prognostics for multi-component systems with degradation rate interactions," IISE Transactions, Taylor & Francis Journals, vol. 46(5), pages 470-482.
    11. Gregory Levitin & Maxim Finkelstein, 2018. "Optimal Mission Abort Policy for Systems Operating in a Random Environment," Risk Analysis, John Wiley & Sons, vol. 38(4), pages 795-803, April.
    12. Liu, Lujie & Yang, Jun, 2023. "A dynamic mission abort policy for the swarm executing missions and its solution method by tailored deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    13. Yan, Rui & Zhu, Xiaoping & Zhu, Xiaoning & Peng, Rui, 2023. "Joint optimisation of task abortions and routes of truck-and-drone systems under random attacks," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    14. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimal task sequencing and aborting in multi-attempt multi-task missions with a limited number of attempts," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    15. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimal aborting policy for shock exposed missions with random rescue time," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    16. Levitin, Gregory & Finkelstein, Maxim & Li, Yan-Feng, 2020. "Balancing mission success probability and risk of system loss by allocating redundancy in systems operating with a rescue option," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    17. Qiu, Qingan & Cui, Lirong, 2019. "Optimal mission abort policy for systems subject to random shocks based on virtual age process," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 11-20.
    18. Peng, Rui, 2018. "Joint routing and aborting optimization of cooperative unmanned aerial vehicles," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 131-137.
    19. Zhao, Xian & Li, Rong & Cao, Shuai & Qiu, Qingan, 2023. "Joint modeling of loading and mission abort policies for systems operating in dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    20. Zhao, Xian & Fan, Yu & Qiu, Qingan & Chen, Ke, 2021. "Multi-criteria mission abort policy for systems subject to two-stage degradation process," European Journal of Operational Research, Elsevier, vol. 295(1), pages 233-245.
    21. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal aborting strategy for three-phase missions performed by multiple units," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    22. Zhao, Xian & Dai, Ying & Qiu, Qingan & Wu, Yaguang, 2022. "Joint optimization of mission aborts and allocation of standby components considering mission loss," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    23. Zhao, Xian & Lv, Zuheng & Qiu, Qingan & Wu, Yaguang, 2023. "Designing two-level rescue depot location and dynamic rescue policies for unmanned vehicles," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    24. Zhu, Xiaoning & Yan, Rui & Peng, Rui & Zhang, Zhongxin, 2020. "Optimal routing, loading and aborting of UAVs executing both visiting tasks and transportation tasks," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    25. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2020. "Optimal aborting rule in multi-attempt missions performed by multicomponent systems," European Journal of Operational Research, Elsevier, vol. 283(1), pages 244-252.
    26. Zhi‐Sheng Ye & Min Xie, 2015. "Rejoinder to ‘Stochastic modelling and analysis of degradation for highly reliable products’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(1), pages 35-36, January.
    27. Zhao, Xian & Chai, Xiaofei & Sun, Jinglei & Qiu, Qingan, 2021. "Optimal bivariate mission abort policy for systems operate in random shock environment," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    28. Wu, Bei & Wei, Xiaohua & Zhang, Yamei & Bai, Sijun, 2023. "Modeling dynamic environment effects on dependent failure processes with varying failure thresholds," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    29. Wu, Congshan & Zhao, Xian & Qiu, Qingan & Sun, Jinglei, 2021. "Optimal mission abort policy for k-out-of-n: F balanced systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    30. Hu, Jiawen & Shen, Jingyuan & Shen, Lijuan, 2020. "Opportunistic maintenance for two-component series systems subject to dependent degradation and shock," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    31. Zhi‐Sheng Ye & Min Xie, 2015. "Stochastic modelling and analysis of degradation for highly reliable products," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(1), pages 16-32, January.
    32. Qiu, Qingan & Cui, Lirong & Wu, Bei, 2020. "Dynamic mission abort policy for systems operating in a controllable environment with self-healing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Optimal attempt scheduling and aborting in heterogenous system performing asynchronous multi-attempt mission," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    2. Zhang, Qin & Liu, Yu & Xiang, Yisha & Xiahou, Tangfan, 2024. "Reinforcement learning in reliability and maintenance optimization: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 251(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xian & Wang, Xinlei & Dai, Ying & Qiu, Qingan, 2024. "Joint optimization of loading, mission abort and rescue site selection policies for UAV," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Optimal task aborting and sequencing in time constrained multi-task multi-attempt missions," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Cheng, Guoqing & Shen, Jiayi & Wang, Fang & Li, Ling & Yang, Nan, 2024. "Optimal mission abort policy for a multi-component system with failure interaction," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Liu, Lujie & Yang, Jun, 2023. "A dynamic mission abort policy for the swarm executing missions and its solution method by tailored deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Meng, Sa & Xing, Liudong & Levitin, Gregory, 2024. "Optimizing component activation and operation aborting in missions with consecutive attempts and common abort command," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "A new self-adaptive mission aborting policy for systems operating in uncertain random shock environment," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    7. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Optimal attempt scheduling and aborting in heterogenous system performing asynchronous multi-attempt mission," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    8. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Multi-attempt missions with multiple rescue options," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    9. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Optimal system loading and aborting in additive multi-attempt missions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    10. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal mission aborting in multistate systems with storage," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    11. Zhao, Xian & Dai, Ying & Qiu, Qingan & Wu, Yaguang, 2022. "Joint optimization of mission aborts and allocation of standby components considering mission loss," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    12. Meng, Sa & Xing, Liudong & Levitin, Gregory, 2024. "Activation delay and aborting policy minimizing expected losses in consecutive attempts having cumulative effect on mission success," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    13. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Mission aborting and system rescue for multi-state systems with arbitrary structure," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    14. Ke Chen & Xian Zhao & Qingan Qiu, 2022. "Optimal Task Abort and Maintenance Policies Considering Time Redundancy," Mathematics, MDPI, vol. 10(9), pages 1-16, April.
    15. Zhao, Xian & Fan, Yu & Qiu, Qingan & Chen, Ke, 2021. "Multi-criteria mission abort policy for systems subject to two-stage degradation process," European Journal of Operational Research, Elsevier, vol. 295(1), pages 233-245.
    16. Zhao, Xian & Liu, Haoran & Wu, Yaguang & Qiu, Qingan, 2023. "Joint optimization of mission abort and system structure considering dynamic tasks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    17. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimal task sequencing and aborting in multi-attempt multi-task missions with a limited number of attempts," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    18. Cheng, Guoqing & Li, Ling & Shangguan, Chunxia & Yang, Nan & Jiang, Bo & Tao, Ningrong, 2023. "Optimal joint inspection and mission abort policy for a partially observable system," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    19. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Optimal component activation in multi-attempt missions with common shock process," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    20. Fang, Chen & Chen, Jianhui & Qiu, Daizhen, 2024. "Reliability modeling for balanced systems considering mission abort policies," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023005963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.