IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v269y2015icp1-8.html
   My bibliography  Save this article

Assessment of a multi-state system under a shock model

Author

Listed:
  • Eryilmaz, Serkan

Abstract

A system is subject to random shocks over time. Let c1 and c2 be two critical levels such that c1 < c2. A shock with a magnitude between c1 and c2 has a partial damage on the system, and the system transits into a lower partially working state upon the occurrence of each shock in (c1, c2). A shock with a magnitude above c2 has a catastrophic affect on the system and it causes a complete failure. Such a shock model creates a multi-state system having random number of states. The lifetime, the time spent by the system in a perfect functioning state, and the total time spent by the system in partially working states are defined and their survival functions are derived when the interarrival times between successive shocks follow phase-type distribution.

Suggested Citation

  • Eryilmaz, Serkan, 2015. "Assessment of a multi-state system under a shock model," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 1-8.
  • Handle: RePEc:eee:apmaco:v:269:y:2015:i:c:p:1-8
    DOI: 10.1016/j.amc.2015.06.129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315009133
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.06.129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baggio, Michele & Perrings, Charles, 2015. "Modeling adaptation in multi-state resource systems," Ecological Economics, Elsevier, vol. 116(C), pages 378-386.
    2. Chen, Jinyuan & Li, Zehui, 2008. "An extended extreme shock maintenance model for a deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1123-1129.
    3. Cirillo, Pasquale & Hüsler, Jürg, 2011. "Extreme shock models: An alternative perspective," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 25-30, January.
    4. Gut, Allan & Hüsler, Jürg, 2005. "Realistic variation of shock models," Statistics & Probability Letters, Elsevier, vol. 74(2), pages 187-204, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Xianzhen & Jin, Sujun & He, Xuefeng & He, David, 2019. "Reliability analysis of coherent systems subject to internal failures and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 75-83.
    2. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "State-based mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Yanbo Song & Xiaoyue Wang, 2022. "Reliability Analysis of the Multi-State k -out-of- n : F Systems with Multiple Operation Mechanisms," Mathematics, MDPI, vol. 10(23), pages 1-16, December.
    4. Zhao, Xian & Guo, Xiaoxin & Wang, Xiaoyue, 2018. "Reliability and maintenance policies for a two-stage shock model with self-healing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 185-194.
    5. Cao, Yingsai & Liu, Sifeng & Fang, Zhigeng & Dong, Wenjie, 2020. "Modeling ageing effects for multi-state systems with multiple components subject to competing and dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    6. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort and rescue for multistate systems operating under the Poisson process of shocks," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    7. Zhao, Xian & Wang, Siqi & Wang, Xiaoyue & Fan, Yu, 2020. "Multi-state balanced systems in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    8. Mohammad Hossein Poursaeed, 2021. "Reliability analysis of an extended shock model," Journal of Risk and Reliability, , vol. 235(5), pages 845-852, October.
    9. Zhao, Xian & Chai, Xiaofei & Sun, Jinglei & Qiu, Qingan, 2021. "Optimal bivariate mission abort policy for systems operate in random shock environment," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    10. Wu, Congshan & Zhao, Xian & Qiu, Qingan & Sun, Jinglei, 2021. "Optimal mission abort policy for k-out-of-n: F balanced systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    11. Wu, Congshan & Pan, Rong & Zhao, Xian & Wang, Xiaoyue, 2024. "Designing preventive maintenance for multi-state systems with performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    12. Mohsen Bohlooli-Zefreh & Afshin Parvardeh & Majid Asadi, 2023. "On the occurrence time of an extreme damage in a general shock model," Journal of Risk and Reliability, , vol. 237(6), pages 1100-1113, December.
    13. Zhao, Xian & Lv, Zuheng & Qiu, Qingan & Wu, Yaguang, 2023. "Designing two-level rescue depot location and dynamic rescue policies for unmanned vehicles," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    14. Zhao, Xian & Wang, Siqi & Wang, Xiaoyue & Cai, Kui, 2018. "A multi-state shock model with mutative failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 1-11.
    15. Xiaofei Chai & Boyu Chen & Xian Zhao, 2023. "Optimal Mission Abort Decisions for Multi-Component Systems Considering Multiple Abort Criteria," Mathematics, MDPI, vol. 11(24), pages 1-12, December.
    16. Srivastav, Himanshu & Lundteigen, Mary Ann & Barros, Anne, 2021. "Introduction of degradation modeling in qualification of the novel subsea technology," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Yaguang Wu & Qingan Qiu, 2022. "Optimal Triggering Policy of Protective Devices Considering Self-Exciting Mechanism of Shocks," Mathematics, MDPI, vol. 10(15), pages 1-18, August.
    18. Levitin, Gregory & Finkelstein, Maxim & Huang, Hong-Zong, 2020. "Optimal mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    19. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal mission abort policies for repairable multistate systems performing multi-attempt mission," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    20. Wang, Siqi & Zhao, Xian & Tian, Zhigang & Zuo, Ming J., 2021. "Optimum component reassignment for balanced systems with multi-state components operating in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    21. Jewgeni H. Dshalalow & Ryan T. White, 2022. "Fluctuation Analysis of a Soft-Extreme Shock Reliability Model," Mathematics, MDPI, vol. 10(18), pages 1-33, September.
    22. Zhao, Xian & Qi, Xin & Wang, Xiaoyue, 2023. "Reliability assessment for coherent systems operating under a generalized mixed shock model with multiple change points of the environment," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    23. Zhao, Xian & Dong, Bingbing & Wang, Xiaoyue, 2023. "Reliability analysis of a two-dimensional voting system equipped with protective devices considering triggering failures," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    24. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal inspections and mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    25. Min Gong & Serkan Eryilmaz & Min Xie, 2020. "Reliability assessment of system under a generalized cumulative shock model," Journal of Risk and Reliability, , vol. 234(1), pages 129-137, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xian & Wang, Siqi & Wang, Xiaoyue & Cai, Kui, 2018. "A multi-state shock model with mutative failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 1-11.
    2. Finkelstein, Maxim & Marais, Francois, 2010. "On terminating Poisson processes in some shock models," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 874-879.
    3. Ji Cha & Maxim Finkelstein & Francois Marais, 2014. "Survival of systems with protection subject to two types of external attacks," Annals of Operations Research, Springer, vol. 212(1), pages 79-91, January.
    4. Gregory Levitin & Maxim Finkelstein, 2018. "Optimal Mission Abort Policy for Systems Operating in a Random Environment," Risk Analysis, John Wiley & Sons, vol. 38(4), pages 795-803, April.
    5. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort policy optimization for series systems with overlapping primary and rescue subsystems operating in a random environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    6. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    7. Dheeraj Goyal & Nil Kamal Hazra & Maxim Finkelstein, 2022. "On Properties of the Phase-type Mixed Poisson Process and its Applications to Reliability Shock Modeling," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2933-2960, December.
    8. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2018. "Constructing a Markov process for modelling a reliability system under multiple failures and replacements," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 34-47.
    9. Lina Bian & Bo Peng & Yong Ye, 2023. "Reliability Analysis and Optimal Replacement Policy for Systems with Generalized Pólya Censored δ Shock Model," Mathematics, MDPI, vol. 11(21), pages 1-19, November.
    10. Levitin, Gregory & Finkelstein, Maxim, 2018. "Optimal mission abort policy for systems in a random environment with variable shock rate," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 11-17.
    11. Yang, Li & Ma, Xiaobing & Peng, Rui & Zhai, Qingqing & Zhao, Yu, 2017. "A preventive maintenance policy based on dependent two-stage deterioration and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 201-211.
    12. Yang, Shunkun & Shao, Qi & Bian, Chong, 2022. "Reliability analysis of ensemble fault tolerance for soft error mitigation against complex radiation effect," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    13. Zhao, Xufeng & Qian, Cunhua & Nakagawa, Toshio, 2013. "Optimal policies for cumulative damage models with maintenance last and first," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 50-59.
    14. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Mission abort policy balancing the uncompleted mission penalty and system loss risk," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 194-201.
    15. Ranjkesh, Somayeh Hamed & Hamadani, Ali Zeinal & Mahmoodi, Safieh, 2019. "A new cumulative shock model with damage and inter-arrival time dependency," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    16. Cirillo, Pasquale & Hüsler, Jürg, 2009. "An urn approach to generalized extreme shock models," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 969-976, April.
    17. Yu, Miaomiao & Tang, Yinghui & Liu, Liping & Cheng, Jiang, 2013. "A phase-type geometric process repair model with spare device procurement and repairman’s multiple vacations," European Journal of Operational Research, Elsevier, vol. 225(2), pages 310-323.
    18. Gregory Levitin & Maxim Finkelstein, 2018. "Optimal mission abort policy with multiple shock number thresholds," Journal of Risk and Reliability, , vol. 232(6), pages 607-615, December.
    19. Fierro, Raúl & Leiva, Víctor & Maidana, Jean Paul, 2018. "Cumulative damage and times of occurrence for a multicomponent system: A discrete time approach," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 323-333.
    20. Cirillo, Pasquale & Hüsler, Jürg, 2011. "Extreme shock models: An alternative perspective," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 25-30, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:269:y:2015:i:c:p:1-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.