IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p4063-d1457373.html
   My bibliography  Save this article

Research on Fault Prediction of Nuclear Safety-Class Signal Conditioning Module Based on Improved GRU

Author

Listed:
  • Zhi Chen

    (National Key Laboratory of Nuclear Reactor Technology, Nuclear Power Institute of China, Chengdu 610213, China
    School of Computer Science, University of South China, Hengyang 421200, China)

  • Miaoxin Dai

    (School of Computer Science, University of South China, Hengyang 421200, China)

  • Jie Liu

    (School of Computer Science, University of South China, Hengyang 421200, China)

  • Wei Jiang

    (National Key Laboratory of Nuclear Reactor Technology, Nuclear Power Institute of China, Chengdu 610213, China)

Abstract

To improve the reliability and maintainability of the nuclear safety-class digital control system (DCS), this paper conducts a study on the fault prediction of critical components in the output circuit of the nuclear safety-class signal conditioning module. To address the issue of insufficient feature extraction for the minor offset fault feature and the low accuracy of fault prediction, a predictive model based on stacked denoising autoencoder (SDAE) feature extraction and an improved gated recurrent unit (GRU) is proposed. Therefore, fault simulation modeling is performed for critical components of the signal output circuit to obtain fault datasets of critical components, and the SDAE model is used to extract fault features. The fault prediction model based on GRU is established, and the number of hidden layers, the number of hidden layer nodes, and the learning rate of the GRU model are optimized using the adaptive gray wolf optimization algorithm (AGWO). The prediction performance evaluation metrics include the root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and absolute error (EA), which are used for evaluating the prediction results of models such as the AGWO-GRU model, recurrent neural network (RNN) model, and long short-term memory network (LSTM). The results show that the GRU model optimized by AGWO has a better prediction accuracy (errors range within 0.01%) for the faults of the circuit critical components, and, moreover, can accurately and stably predict the fault trend of the circuit.

Suggested Citation

  • Zhi Chen & Miaoxin Dai & Jie Liu & Wei Jiang, 2024. "Research on Fault Prediction of Nuclear Safety-Class Signal Conditioning Module Based on Improved GRU," Energies, MDPI, vol. 17(16), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4063-:d:1457373
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/4063/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/4063/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yong-gang Zhang & Jun Tang & Zheng-ying He & Junkun Tan & Chao Li, 2021. "A novel displacement prediction method using gated recurrent unit model with time series analysis in the Erdaohe landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 783-813, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinchang Liu & Bolong Liu, 2023. "A Hybrid Time Series Model for Predicting the Displacement of High Slope in the Loess Plateau Region," Sustainability, MDPI, vol. 15(6), pages 1-26, March.
    2. Akbal, Yıldırım & Ünlü, Kamil Demirberk, 2022. "A univariate time series methodology based on sequence-to-sequence learning for short to midterm wind power production," Renewable Energy, Elsevier, vol. 200(C), pages 832-844.
    3. Zian Lin & Xiyan Sun & Yuanfa Ji, 2022. "Landslide Displacement Prediction Based on Time Series Analysis and Double-BiLSTM Model," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
    4. Zian Lin & Yuanfa Ji & Weibin Liang & Xiyan Sun, 2022. "Landslide Displacement Prediction Based on Time-Frequency Analysis and LMD-BiLSTM Model," Mathematics, MDPI, vol. 10(13), pages 1-19, June.
    5. Pamir & Nadeem Javaid & Saher Javaid & Muhammad Asif & Muhammad Umar Javed & Adamu Sani Yahaya & Sheraz Aslam, 2022. "Synthetic Theft Attacks and Long Short Term Memory-Based Preprocessing for Electricity Theft Detection Using Gated Recurrent Unit," Energies, MDPI, vol. 15(8), pages 1-20, April.
    6. Zian Lin & Yuanfa Ji & Xiyan Sun, 2023. "Landslide Displacement Prediction Based on CEEMDAN Method and CNN–BiLSTM Model," Sustainability, MDPI, vol. 15(13), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4063-:d:1457373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.