IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v105y2021i1d10.1007_s11069-020-04337-6.html
   My bibliography  Save this article

A novel displacement prediction method using gated recurrent unit model with time series analysis in the Erdaohe landslide

Author

Listed:
  • Yong-gang Zhang

    (Tongji University
    China University of Mining and Technology
    China Geological Survey)

  • Jun Tang

    (Xiamen Xijiao Hard Science Industrial Technology Research Institute Co., Ltd
    Huaqiao University)

  • Zheng-ying He

    (Tongji University)

  • Junkun Tan

    (Central South University)

  • Chao Li

    (Tianjin University)

Abstract

Landslides are natural phenomena, causing serious fatalities and negative impacts on socioeconomic. The Three Gorges Reservoir (TGR) area of China is characterized by more prone to landslides for the rainfall and variation of reservoir level. Prediction of landslide displacement is favorable for the establishment of early geohazard warning system. Conventional machine learning methods as forecasting models often suffer gradient disappearance and explosion, or training is slow. Hence, a dynamic method for displacement prediction of the step-wise landslide is provided, which is based on gated recurrent unit (GRU) model with time series analysis. The establishment process of this method is interpreted and applied to Erdaohe landslide induced by multi-factors in TGR area: the accumulative displacements of landslide are obtained by the global positioning system; the measured accumulative displacements is decomposed into the trend and periodic displacements by moving average method; the predictive trend displacement is fitted by a cubic polynomial; and the periodic displacement is obtained by the GRU model training. And the support vector machine (SVM) model and GRU model are used as comparisons. It is verified that the proposed method can quite accurately predict the displacement of the landslide, which benefits for effective early geological hazards warning system. Moreover, the proposed method has higher prediction accuracy than the SVM model.

Suggested Citation

  • Yong-gang Zhang & Jun Tang & Zheng-ying He & Junkun Tan & Chao Li, 2021. "A novel displacement prediction method using gated recurrent unit model with time series analysis in the Erdaohe landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 783-813, January.
  • Handle: RePEc:spr:nathaz:v:105:y:2021:i:1:d:10.1007_s11069-020-04337-6
    DOI: 10.1007/s11069-020-04337-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04337-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04337-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zian Lin & Yuanfa Ji & Xiyan Sun, 2023. "Landslide Displacement Prediction Based on CEEMDAN Method and CNN–BiLSTM Model," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    2. Xinchang Liu & Bolong Liu, 2023. "A Hybrid Time Series Model for Predicting the Displacement of High Slope in the Loess Plateau Region," Sustainability, MDPI, vol. 15(6), pages 1-26, March.
    3. Pamir & Nadeem Javaid & Saher Javaid & Muhammad Asif & Muhammad Umar Javed & Adamu Sani Yahaya & Sheraz Aslam, 2022. "Synthetic Theft Attacks and Long Short Term Memory-Based Preprocessing for Electricity Theft Detection Using Gated Recurrent Unit," Energies, MDPI, vol. 15(8), pages 1-20, April.
    4. Akbal, Yıldırım & Ünlü, Kamil Demirberk, 2022. "A univariate time series methodology based on sequence-to-sequence learning for short to midterm wind power production," Renewable Energy, Elsevier, vol. 200(C), pages 832-844.
    5. Zian Lin & Yuanfa Ji & Weibin Liang & Xiyan Sun, 2022. "Landslide Displacement Prediction Based on Time-Frequency Analysis and LMD-BiLSTM Model," Mathematics, MDPI, vol. 10(13), pages 1-19, June.
    6. Zhi Chen & Miaoxin Dai & Jie Liu & Wei Jiang, 2024. "Research on Fault Prediction of Nuclear Safety-Class Signal Conditioning Module Based on Improved GRU," Energies, MDPI, vol. 17(16), pages 1-16, August.
    7. Zian Lin & Xiyan Sun & Yuanfa Ji, 2022. "Landslide Displacement Prediction Based on Time Series Analysis and Double-BiLSTM Model," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
    8. Quan Zhao & Hong Wang & Haoyu Zhou & Fei Gan & Liang Yao & Qing Zhou & Yongri An, 2024. "An interpretable and high-precision method for predicting landslide displacement using evolutionary attention mechanism," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11943-11967, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:105:y:2021:i:1:d:10.1007_s11069-020-04337-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.