IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i10p1700-d816532.html
   My bibliography  Save this article

Heterogeneous Overdispersed Count Data Regressions via Double-Penalized Estimations

Author

Listed:
  • Shaomin Li

    (Center for Statistics and Data Science, Beijing Normal University, Zhuhai 516087, China)

  • Haoyu Wei

    (Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA)

  • Xiaoyu Lei

    (Department of Statistics, University of Chicago, Chicago, IL 60637, USA)

Abstract

Recently, the high-dimensional negative binomial regression (NBR) for count data has been widely used in many scientific fields. However, most studies assumed the dispersion parameter as a constant, which may not be satisfied in practice. This paper studies the variable selection and dispersion estimation for the heterogeneous NBR models, which model the dispersion parameter as a function. Specifically, we proposed a double regression and applied a double ℓ 1 -penalty to both regressions. Under the restricted eigenvalue conditions, we prove the oracle inequalities for the lasso estimators of two partial regression coefficients for the first time, using concentration inequalities of empirical processes. Furthermore, derived from the oracle inequalities, the consistency and convergence rate for the estimators are the theoretical guarantees for further statistical inference. Finally, both simulations and a real data analysis demonstrate that the new methods are effective.

Suggested Citation

  • Shaomin Li & Haoyu Wei & Xiaoyu Lei, 2022. "Heterogeneous Overdispersed Count Data Regressions via Double-Penalized Estimations," Mathematics, MDPI, vol. 10(10), pages 1-25, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1700-:d:816532
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/10/1700/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/10/1700/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Rafael Weißbach & Lucas Radloff, 2020. "Consistency for the negative binomial regression with fixed covariate," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(5), pages 627-641, July.
    3. Andreas Million & Regina T. Riphahn & Achim Wambach, 2003. "Incentive effects in the demand for health care: a bivariate panel count data estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 387-405.
    4. Dai, Hongsheng & Bao, Yanchun & Bao, Mingtang, 2013. "Maximum likelihood estimate for the dispersion parameter of the negative binomial distribution," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 21-27.
    5. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    6. Satoko Moriguchi & Kazuo Murota & Akihisa Tamura & Fabio Tardella, 2020. "Discrete Midpoint Convexity," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 99-128, February.
    7. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    8. Dengke Xu & Zhongzhan Zhang & Liucang Wu, 2014. "Variable selection in high-dimensional double generalized linear models," Statistical Papers, Springer, vol. 55(2), pages 327-347, May.
    9. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huiming Zhang & Haoyu Wei, 2022. "Sharper Sub-Weibull Concentrations," Mathematics, MDPI, vol. 10(13), pages 1-29, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    3. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    4. Bartosz Uniejewski, 2024. "Regularization for electricity price forecasting," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(3), pages 267-286.
    5. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    6. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    7. Ander Wilson & Brian J. Reich, 2014. "Confounder selection via penalized credible regions," Biometrics, The International Biometric Society, vol. 70(4), pages 852-861, December.
    8. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    9. Zeyu Bian & Erica E. M. Moodie & Susan M. Shortreed & Sahir Bhatnagar, 2023. "Variable selection in regression‐based estimation of dynamic treatment regimes," Biometrics, The International Biometric Society, vol. 79(2), pages 988-999, June.
    10. Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022. "On LASSO for predictive regression," Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
    11. Simona Buscemi & Antonella Plaia, 2020. "Model selection in linear mixed-effect models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 529-575, December.
    12. Yongjin Li & Qingzhao Zhang & Qihua Wang, 2017. "Penalized estimation equation for an extended single-index model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 169-187, February.
    13. Yang, Yanlin & Hu, Xuemei & Jiang, Huifeng, 2022. "Group penalized logistic regressions predict up and down trends for stock prices," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    14. Zhang, Tonglin, 2024. "Variables selection using L0 penalty," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    15. Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.
    16. Li, Gaorong & Lian, Heng & Feng, Sanying & Zhu, Lixing, 2013. "Automatic variable selection for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 174-186.
    17. Yinjun Chen & Hao Ming & Hu Yang, 2024. "Efficient variable selection for high-dimensional multiplicative models: a novel LPRE-based approach," Statistical Papers, Springer, vol. 65(6), pages 3713-3737, August.
    18. Mojtaba Ganjali & Taban Baghfalaki, 2018. "Application of Penalized Mixed Model in Identification of Genes in Yeast Cell-Cycle Gene Expression Data," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 6(2), pages 38-41, April.
    19. Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.
    20. Yu-Zhu Tian & Man-Lai Tang & Wai-Sum Chan & Mao-Zai Tian, 2021. "Bayesian bridge-randomized penalized quantile regression for ordinal longitudinal data, with application to firm’s bond ratings," Computational Statistics, Springer, vol. 36(2), pages 1289-1319, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1700-:d:816532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.