IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i13p2252-d849019.html
   My bibliography  Save this article

Sharper Sub-Weibull Concentrations

Author

Listed:
  • Huiming Zhang

    (Department of Mathematics, Faculty of Science and Technology, University of Macau, Macau 999078, China
    Zhuhai UM Science & Technology Research Institute, Zhuhai 519031, China
    These authors contributed equally to this work.)

  • Haoyu Wei

    (Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA
    These authors contributed equally to this work.)

Abstract

Constant-specified and exponential concentration inequalities play an essential role in the finite-sample theory of machine learning and high-dimensional statistics area. We obtain sharper and constants-specified concentration inequalities for the sum of independent sub-Weibull random variables, which leads to a mixture of two tails: sub-Gaussian for small deviations and sub-Weibull for large deviations from the mean. These bounds are new and improve existing bounds with sharper constants. In addition, a new sub-Weibull parameter is also proposed, which enables recovering the tight concentration inequality for a random variable (vector). For statistical applications, we give an ℓ 2 -error of estimated coefficients in negative binomial regressions when the heavy-tailed covariates are sub-Weibull distributed with sparse structures, which is a new result for negative binomial regressions. In applying random matrices, we derive non-asymptotic versions of Bai-Yin’s theorem for sub-Weibull entries with exponential tail bounds. Finally, by demonstrating a sub-Weibull confidence region for a log-truncated Z-estimator without the second-moment condition, we discuss and define the sub-Weibull type robust estimator for independent observations { X i } i = 1 n without exponential-moment conditions.

Suggested Citation

  • Huiming Zhang & Haoyu Wei, 2022. "Sharper Sub-Weibull Concentrations," Mathematics, MDPI, vol. 10(13), pages 1-29, June.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2252-:d:849019
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/13/2252/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/13/2252/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shaomin Li & Haoyu Wei & Xiaoyu Lei, 2021. "Heterogeneous Overdispersed Count Data Regressions via Double Penalized Estimations," Papers 2110.03552, arXiv.org, revised Feb 2022.
    2. Shaomin Li & Haoyu Wei & Xiaoyu Lei, 2022. "Heterogeneous Overdispersed Count Data Regressions via Double-Penalized Estimations," Mathematics, MDPI, vol. 10(10), pages 1-25, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haoyu Wei & Runzhe Wan & Lei Shi & Rui Song, 2023. "Zero-Inflated Bandits," Papers 2312.15595, arXiv.org, revised Oct 2024.
    2. Greeshma Balabhadra & El Mehdi Ainasse & Pawel Polak, 2023. "High-Frequency Volatility Estimation with Fast Multiple Change Points Detection," Papers 2303.10550, arXiv.org, revised Jun 2024.
    3. Xiaowei Yang & Xinqiao Liu & Haoyu Wei, 2022. "Concentration inequalities of MLE and robust MLE," Papers 2210.09398, arXiv.org, revised Dec 2022.
    4. Huiming Zhang & Haoyu Wei & Guang Cheng, 2023. "Tight Non-asymptotic Inference via Sub-Gaussian Intrinsic Moment Norm," Papers 2303.07287, arXiv.org, revised Jan 2024.
    5. Tanoue, Yuta, 2024. "Concentration inequality and the weak law of large numbers for the sum of partly negatively dependent φ-subgaussian random variables," Statistics & Probability Letters, Elsevier, vol. 206(C).
    6. Fei Wang & Yuhao Deng, 2023. "Non-Asymptotic Bounds of AIPW Estimators for Means with Missingness at Random," Mathematics, MDPI, vol. 11(4), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2252-:d:849019. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.