IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i8p274-d399666.html
   My bibliography  Save this article

Observed Vegetation Greening and Its Relationships with Cropland Changes and Climate in China

Author

Listed:
  • Yuzhen Zhang

    (Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Shunlin Liang

    (Department of Geographical Sciences, University of Maryland, College Park, MD 20740, USA)

  • Zhiqiang Xiao

    (State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

Abstract

Chinese croplands have changed considerably over the past decades, but their impacts on the environment remain underexplored. Meanwhile, understanding the contributions of human activities to vegetation greenness has been attracting more attention but still needs to be improved. To address both issues, this study explored vegetation greening and its relationships with Chinese cropland changes and climate. Greenness trends were first identified from the normalized difference vegetation index and leaf area index from 1982–2015 using three trend detection algorithms. Boosted regression trees were then performed to explore underlying relationships between vegetation greening and cropland and climate predictors. The results showed the widespread greening in Chinese croplands but large discrepancies in greenness trends characterized by different metrics. Annual greenness trends in most Chinese croplands were more likely nonlinearly associated with climate compared with cropland changes, while cropland percentage only predominantly contributed to vegetation greening in the Sichuan Basin and its surrounding regions with leaf area index data and, in the Northeast China Plain, with vegetation index data. Results highlight both the differences in vegetation greenness using different indicators and further impacts on the nonlinear relationships with cropland and climate, which have been largely ignored in previous studies.

Suggested Citation

  • Yuzhen Zhang & Shunlin Liang & Zhiqiang Xiao, 2020. "Observed Vegetation Greening and Its Relationships with Cropland Changes and Climate in China," Land, MDPI, vol. 9(8), pages 1-19, August.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:8:p:274-:d:399666
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/8/274/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/8/274/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Bing & Gao, Peng & Niu, Xiang & Sun, Jianni, 2017. "Policy-driven China’s Grain to Green Program: Implications for ecosystem services," Ecosystem Services, Elsevier, vol. 27(PA), pages 38-47.
    2. Jiafu Mao & Aurélien Ribes & Binyan Yan & Xiaoying Shi & Peter E. Thornton & Roland Séférian & Philippe Ciais & Ranga B. Myneni & Hervé Douville & Shilong Piao & Zaichun Zhu & Robert E. Dickinson & Yo, 2016. "Human-induced greening of the northern extratropical land surface," Nature Climate Change, Nature, vol. 6(10), pages 959-963, October.
    3. Wenjiao Shi & Fulu Tao & Jiyuan Liu & Xinliang Xu & Wenhui Kuang & Jinwei Dong & Xiaoli Shi, 2014. "Has climate change driven spatio-temporal changes of cropland in northern China since the 1970s?," Climatic Change, Springer, vol. 124(1), pages 163-177, May.
    4. Florian Zabel & Ruth Delzeit & Julia M. Schneider & Ralf Seppelt & Wolfram Mauser & Tomáš Václavík, 2019. "Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongliang Gu & Min Chen, 2021. "Comprehensive Insights into Spatial-Temporal Evolution Patterns, Dominant Factors of NDVI from Pixel Scale, as a Case of Shaanxi Province, China," IJERPH, MDPI, vol. 18(19), pages 1-27, September.
    2. Yan Li & Jie Gong & Yunxia Zhang & Bingli Gao, 2022. "NDVI-Based Greening of Alpine Steppe and Its Relationships with Climatic Change and Grazing Intensity in the Southwestern Tibetan Plateau," Land, MDPI, vol. 11(7), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuejuan Yang & Kun Wang & Di Liu & Xinquan Zhao & Jiangwen Fan & Jinsheng Li & Xiajie Zhai & Cong Zhang & Ruyi Zhan, 2019. "Spatiotemporal Variation Characteristics of Ecosystem Service Losses in the Agro-Pastoral Ecotone of Northern China," IJERPH, MDPI, vol. 16(7), pages 1-23, April.
    2. Argueyrolles, Robin & Delzeit, Ruth, 2022. "The interconnections between Fossil Fuel Subsidy Reforms and biofuels," Conference papers 333492, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Yongwei Zhou & Changhai Liu & Ning Ai & Xianghui Tuo & Zhiyong Zhang & Rui Gao & Jiafeng Qin & Caixia Yuan, 2022. "Characteristics of Soil Macrofauna and Its Coupling Relationship with Environmental Factors in the Loess Area of Northern Shaanxi," Sustainability, MDPI, vol. 14(5), pages 1-14, February.
    4. Xin Deng & Dingde Xu & Miao Zeng & Yanbin Qi, 2018. "Landslides and Cropland Abandonment in China’s Mountainous Areas: Spatial Distribution, Empirical Analysis and Policy Implications," Sustainability, MDPI, vol. 10(11), pages 1-14, October.
    5. Xie, Hualin & Wang, Wei & Zhang, Xinmin, 2018. "Evolutionary game and simulation of management strategies of fallow cultivated land: A case study in Hunan province, China," Land Use Policy, Elsevier, vol. 71(C), pages 86-97.
    6. Verena Preusse & Nils Nölke & Meike Wollni, 2024. "Urbanization and adoption of sustainable agricultural practices in the rural‐urban interface of Bangalore, India," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 72(2), pages 167-198, June.
    7. Pinki Mondal & Sonali Shukla McDermid, 2021. "Editorial for Special Issue: “Global Vegetation and Land Surface Dynamics in a Changing Climate”," Land, MDPI, vol. 10(1), pages 1-4, January.
    8. Xinhao Suo & Shixiong Cao, 2021. "China’s three north shelter forest program: cost–benefit analysis and policy implications," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14605-14618, October.
    9. Vieira Junior, Nilson Aparecido & Evers, Jochem & dos Santos Vianna, Murilo & Pedreira, Bruno Carneiro e & Pezzopane, José Ricardo Macedo & Marin, Fábio Ricardo, 2022. "Understanding the arrangement of Eucalyptus-Marandu palisade grass silvopastoral systems in Brazil," Agricultural Systems, Elsevier, vol. 196(C).
    10. Delzeit, Ruth & Heimann, Tobias & Schünemann, Franziska & Söder, Mareike, 2021. "Scenarios for an impact assessment of global bioeconomy strategies: Results from a co-design process," Kiel Working Papers 2188, Kiel Institute for the World Economy (IfW Kiel).
    11. Shen, Ge & Yu, Qiangyi & Zhou, Qingbo & Wang, Cong & Wu, Wenbin, 2023. "From multiple cropping frequency to multiple cropping system: A new perspective for the characterization of cropland use intensity," Agricultural Systems, Elsevier, vol. 204(C).
    12. Qianru Yu & Chen-Chieh Feng & NuanYin Xu & Luo Guo & Dan Wang, 2019. "Quantifying the Impact of Grain for Green Program on Ecosystem Service Management: A Case Study of Exibei Region, China," IJERPH, MDPI, vol. 16(13), pages 1-17, June.
    13. Elia Moretti & Michael Benzaquen, 2024. "Mitigating Farmland Biodiversity Loss: A Bio-Economic Model of Land Consolidation and Pesticide Use," Papers 2407.19749, arXiv.org, revised Jan 2025.
    14. Cai, Liping & Wang, Hui & Liu, Yanxu & Fan, Donglin & Li, Xiaoxiao, 2022. "Is potential cultivated land expanding or shrinking in the dryland of China? Spatiotemporal evaluation based on remote sensing and SVM," Land Use Policy, Elsevier, vol. 112(C).
    15. Wei, Zhibiao & Zhuang, Minghao & Hellegers, Petra & Cui, Zhenling & Hoffland, Ellis, 2023. "Towards circular nitrogen use in the agri-food system at village and county level in China," Agricultural Systems, Elsevier, vol. 209(C).
    16. Liu, Zhengjia & Wang, Jieyong & Wang, Xiaoyue & Wang, Yongsheng, 2020. "Understanding the impacts of ‘Grain for Green’ land management practice on land greening dynamics over the Loess Plateau of China," Land Use Policy, Elsevier, vol. 99(C).
    17. Gackstetter, David & von Bloh, Malte & Hannus, Veronika & Meyer, Sebastian T. & Weisser, Wolfgang & Luksch, Claudia & Asseng, Senthold, 2023. "Autonomous field management – An enabler of sustainable future in agriculture," Agricultural Systems, Elsevier, vol. 206(C).
    18. Wang, Liye & Zhang, Siyu & Xiong, Qiangqiang & Liu, Yu & Liu, Yanfang & Liu, Yaolin, 2022. "Spatiotemporal dynamics of cropland expansion and its driving factors in the Yangtze River Economic Belt: A nuanced analysis at the county scale," Land Use Policy, Elsevier, vol. 119(C).
    19. Lijuan Miao & Feng Zhu & Zhanli Sun & John C. Moore & Xuefeng Cui, 2016. "China’s Land-Use Changes during the Past 300 Years: A Historical Perspective," IJERPH, MDPI, vol. 13(9), pages 1-16, August.
    20. Chen, Hang & Meng, Fei & Yu, Zhenning & Tan, Yongzhong, 2022. "Spatial–temporal characteristics and influencing factors of farmland expansion in different agricultural regions of Heilongjiang Province, China," Land Use Policy, Elsevier, vol. 115(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:8:p:274-:d:399666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.