IDEAS home Printed from https://ideas.repec.org/p/zbw/ifwkwp/2188.html
   My bibliography  Save this paper

Scenarios for an impact assessment of global bioeconomy strategies: Results from a co-design process

Author

Listed:
  • Delzeit, Ruth
  • Heimann, Tobias
  • Schünemann, Franziska
  • Söder, Mareike

Abstract

The replacement of fossil resources with renewable biomass in a bioeconomy is seen as a major contribution to climate change mitigation. This transformation will affect all members of society, making it crucial to consider the views of different stakeholders to ensure a socially acceptable transition towards a sustainable bioeconomy. To explore potential outcomes of bioeconomy strategies assuming different future pathways, a scenario analysis is a tool to inform decision-makers about policy impacts and trade-offs. The inter- and transdisciplinary research project 'BioNex - The future of the biomass nexus' is the first project to develop bioeconomy scenarios together with stakeholders from politics, industry, and civil society in an iterative co-design process. As a result, three storylines describing diverging potential global futures are developed and quantified: Towards sustainability, business as usual, and towards resource depletion. The futures are driven by different assumptions on climate policy, cropland expansion, productivity growth in agriculture, prices of fossil energy, and consumption behaviour. Additionally, in the co-design process, three bioeconomy policies are developed: policy as usual, stronger development of the bioeconomy, and no policies. Besides presenting the results of the stakeholder workshops, this paper evaluates the strengths and shortcomings of a stakeholder approach in terms of policy-oriented research. According to the experience made within this study, it provides valuable insights for researchers and funding authorities they can use to optimise the employment of stakeholder-based research approaches.

Suggested Citation

  • Delzeit, Ruth & Heimann, Tobias & Schünemann, Franziska & Söder, Mareike, 2021. "Scenarios for an impact assessment of global bioeconomy strategies: Results from a co-design process," Kiel Working Papers 2188, Kiel Institute for the World Economy (IfW Kiel).
  • Handle: RePEc:zbw:ifwkwp:2188
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/236641/1/1765338077.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Angel Aguiar & Badri Narayanan & Robert McDougall, 2016. "An Overview of the GTAP 9 Data Base," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(1), pages 181-208, June.
    2. Florian Zabel & Ruth Delzeit & Julia M. Schneider & Ralf Seppelt & Wolfram Mauser & Tomáš Václavík, 2019. "Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. World Bank, 2017. "The Sunken Billions Revisited," World Bank Publications - Books, The World Bank Group, number 24056.
    4. Delzeit, Ruth & Klepper, Gernot & Zabel, Florian & Mauser, Wolfram, 2018. "Global economic–biophysical assessment of midterm scenarios for agricultural markets—biofuel policies, dietary patterns, cropland expansion, and productivity growth," Open Access Publications from Kiel Institute for the World Economy 226014, Kiel Institute for the World Economy (IfW Kiel).
    5. Wolfram Mauser & Gernot Klepper & Florian Zabel & Ruth Delzeit & Tobias Hank & Birgitta Putzenlechner & Alvaro Calzadilla, 2015. "Global biomass production potentials exceed expected future demand without the need for cropland expansion," Nature Communications, Nature, vol. 6(1), pages 1-11, December.
    6. Heimann, Tobias, 2019. "Bioeconomy and SDGs: Does the Bioeconomy Support the Achievement of the SDGs?," Open Access Publications from Kiel Institute for the World Economy 225998, Kiel Institute for the World Economy (IfW Kiel).
    7. Mathijs Vliet & Kasper Kok, 2015. "Combining backcasting and exploratory scenarios to develop robust water strategies in face of uncertain futures," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(1), pages 43-74, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Argueyrolles, Robin & Delzeit, Ruth, 2022. "The interconnections between Fossil Fuel Subsidy Reforms and biofuels," Conference papers 333492, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heimann, Tobias & Delzeit, Ruth, 2024. "Land for fish: Quantifying the connection between the aquaculture sector and agricultural markets," Open Access Publications from Kiel Institute for the World Economy 281986, Kiel Institute for the World Economy (IfW Kiel).
    2. Ruth Delzeit & Robert Beach & Ruben Bibas & Wolfgang Britz & Jean Chateau & Florian Freund & Julien Lefevre & Franziska Schuenemann & Timothy Sulser & Hugo Valin & Bas van Ruijven & Matthias Weitzel &, 2020. "Linking Global CGE Models with Sectoral Models to Generate Baseline Scenarios: Approaches, Challenges, and Opportunities," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 162-195, June.
    3. Ruth Delzeit & Roberto Beach & Ruben Bibas & Wolfgang Britz & Jean Chateau & Florian Freund & Julien Lefevre & Franziska Schuenemann & Timothy Sulser & Hugo Valin & Bas van Ruijven & Matthias Weitzel , 2020. "Linking global CGE models with sectoral models to generate baseline scenarios: Approaches, opportunities and pitfalls," Post-Print hal-03128285, HAL.
    4. Heimann, Tobias & Delzeit, Ruth, 2024. "Land for fish: Quantifying the connection between the aquaculture sector and agricultural markets," Ecological Economics, Elsevier, vol. 217(C).
    5. Yu, Qiangyi & Xiang, Mingtao & Sun, Zhanli & Wu, Wenbin, 2021. "The complexity of measuring cropland use intensity: An empirical study," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 192.
    6. Delzeit, Ruth & Heimann, Tobias & Schünemann, Franziska & Söder, Mareike, 2021. "DART-BIO: A technical description," Kiel Working Papers 2195, Kiel Institute for the World Economy (IfW Kiel).
    7. Maria Lourdes Ordoñez Olivo & Zoltán Lakner, 2023. "Shaping the Knowledge Base of Bioeconomy Sectors Development in Latin American and Caribbean Countries: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    8. Winchester, Niven & Reilly, John M., 2020. "The economic and emissions benefits of engineered wood products in a low-carbon future," Energy Economics, Elsevier, vol. 85(C).
    9. Nils-Arne Ekerhovd & Daniel V. Gordon, 2020. "Profitability, Capacity and Productivity Trends in an Evolving Rights Based Fishery: The Norwegian Purse Seine Fishery," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(3), pages 565-591, November.
    10. Argueyrolles, Robin & Delzeit, Ruth, 2022. "The interconnections between Fossil Fuel Subsidy Reforms and biofuels," Conference papers 333492, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Inkyo Cheong & Valijon Turakulov, 2022. "How Central Asia to Escape from trade isolation?: Policy targeted scenarios by CGE modelling," The World Economy, Wiley Blackwell, vol. 45(8), pages 2622-2648, August.
    12. Taoyuan Wei & Qin Zhu & Solveig Glomsrød, 2018. "Ageing Impact on the Economy and Emissions in China: A Global Computable General Equilibrium Analysis," Energies, MDPI, vol. 11(4), pages 1-13, April.
    13. Balie, Jean & Strutt, Anna & Nelgen, Signe & Narayanan, 2018. "Infrastructure investments for improved market access in subSaharan Africa: A CGE analysis," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 13(2), June.
    14. Itakura, Ken, 2019. "Incorporating Global Value Chains into the Dynamic GTAP Model [tentative results]," Conference papers 333111, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. Cailong Xu & Ruidong Li & Wenwen Song & Tingting Wu & Shi Sun & Shuixiu Hu & Tianfu Han & Cunxiang Wu, 2021. "Responses of Branch Number and Yield Component of Soybean Cultivars Tested in Different Planting Densities," Agriculture, MDPI, vol. 11(1), pages 1-12, January.
    16. Becker, Jonathon M., 2021. "General equilibrium impacts on the U.S. economy of a disruption to Chinese cobalt supply," Resources Policy, Elsevier, vol. 71(C).
    17. Khan, Aamir & Walmsley, Terrie & Mukhopadhyay, Kakali, 2019. "Trade Liberalization and Income Inequality: The Case for Pakistan," Conference papers 333125, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    19. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    20. James D. A. Millington & Hang Xiong & Steve Peterson & Jeremy Woods, 2017. "Integrating Modelling Approaches for Understanding Telecoupling: Global Food Trade and Local Land Use," Land, MDPI, vol. 6(3), pages 1-18, August.

    More about this item

    Keywords

    Co-design; scenario analysis; bioeconomy; modelling framework;
    All these keywords.

    JEL classification:

    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services
    • C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ifwkwp:2188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iwkiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.