IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13338-d1233780.html
   My bibliography  Save this article

Spatiotemporal Dynamics of the Cropland Area and Its Response to Increasing Regional Extreme Weather Events in the Farming-Pastoral Ecotone of Northern China during 1992–2020

Author

Listed:
  • Wencun Zhou

    (Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Zhengjia Liu

    (Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Sisi Wang

    (National Remote Sensing Center of China, Beijing 100036, China)

Abstract

The cropland area is closely related to food production. Previously, more focuses were paid on impacts of extreme events on food production, but less on cropland dynamics. This study used the piecewise linear regression, the correlation analysis, and the ridge regression to explore the spatiotemporal dynamics of cropland and its drivers in three time periods (1992–2020, 1992–2010, and 2010–2020) at the Farming-Pastoral Ecotone of Northern China (FPEN). Specifically, 13 driving factors were considered from the perspectives of extreme events, environmental conditions, socioeconomic development, urban sprawl, and ecological construction. Results showed that the cropland area increased significantly at a rate of 333.5 km 2 /a during 1992–2020 and was spatially clustered in the eastern FPEN. The impact extent and size of each driving factor on the cropland trend presented large spatiotemporal differences, but ecological construction had, overall, the greatest impact on cropland area changes, followed by urban sprawl. In comparison, extreme low temperature had the smallest. Since the 2010s, areas with urban sprawl being the dominant factor in cropland dynamics have increased by 41.9%, but it is still less than the ecological construction impact. Furthermore, this study found that extreme event effects on the cropland area trend evidently increased. Particularly, extreme high temperature displayed the highest increase (~99.4%). Cropland area changes dominated by extreme temperature events in 2010–2020 increased by nearly six times compared to those in 1992–2010. These results suggest that policy and planning makers should caution increasing impacts of regional extreme weather events on cropland area changes.

Suggested Citation

  • Wencun Zhou & Zhengjia Liu & Sisi Wang, 2023. "Spatiotemporal Dynamics of the Cropland Area and Its Response to Increasing Regional Extreme Weather Events in the Farming-Pastoral Ecotone of Northern China during 1992–2020," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13338-:d:1233780
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13338/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13338/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yahui & Li, Xiubin & He, Huiyan & Xin, Liangjie & Tan, Minghong, 2020. "How reliable are cultivated land assets as social security for Chinese farmers?," Land Use Policy, Elsevier, vol. 90(C).
    2. Liu, Zhengjia & Wang, Jieyong & Wang, Xiaoyue & Wang, Yongsheng, 2020. "Understanding the impacts of ‘Grain for Green’ land management practice on land greening dynamics over the Loess Plateau of China," Land Use Policy, Elsevier, vol. 99(C).
    3. Uisso, Amani Michael & Tanrıvermiş, Harun, 2021. "Driving factors and assessment of changes in the use of arable land in Tanzania," Land Use Policy, Elsevier, vol. 104(C).
    4. Emiko Fukase & Will Martin, 2016. "Who Will Feed China in the 21st Century? Income Growth and Food Demand and Supply in China," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(1), pages 3-23, February.
    5. Tian, Junfeng & Wang, Binyan & Zhang, Chuanrong & Li, Weidong & Wang, Shijun, 2020. "Mechanism of regional land use transition in underdeveloped areas of China: A case study of northeast China," Land Use Policy, Elsevier, vol. 94(C).
    6. Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
    7. Schmitt, Jonas & Offermann, Frank & Söder, Mareike & Frühauf, Cathleen & Finger, Robert, 2022. "Extreme weather events cause significant crop yield losses at the farm level in German agriculture," Food Policy, Elsevier, vol. 112(C).
    8. Chen, Xin & Jiang, Li & Zhang, Guoliang & Meng, Lijun & Pan, Zhihua & Lun, Fei & An, Pingli, 2021. "Green-depressing cropping system: A referential land use practice for fallow to ensure a harmonious human-land relationship in the farming-pastoral ecotone of northern China," Land Use Policy, Elsevier, vol. 100(C).
    9. Zhou, Yang & Li, Xunhuan & Liu, Yansui, 2020. "Land use change and driving factors in rural China during the period 1995-2015," Land Use Policy, Elsevier, vol. 99(C).
    10. Wang, Liye & Zhang, Siyu & Xiong, Qiangqiang & Liu, Yu & Liu, Yanfang & Liu, Yaolin, 2022. "Spatiotemporal dynamics of cropland expansion and its driving factors in the Yangtze River Economic Belt: A nuanced analysis at the county scale," Land Use Policy, Elsevier, vol. 119(C).
    11. Ariel Ortiz-Bobea & Toby R. Ault & Carlos M. Carrillo & Robert G. Chambers & David B. Lobell, 2021. "Anthropogenic climate change has slowed global agricultural productivity growth," Nature Climate Change, Nature, vol. 11(4), pages 306-312, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wancong Li & Hong Li & Shijun Wang & Zhiqiang Feng, 2022. "Spatiotemporal Evolution of County-Level Land Use Structure in the Context of Urban Shrinkage: Evidence from Northeast China," Land, MDPI, vol. 11(10), pages 1-19, October.
    2. Bucheli, Janic & Visse, Margot & Herrera, Juan & Häner, Lilia Levy & Tack, Jesse & Finger, Robert, 2022. "Precipitation causes quality losses of economic relevance in wheat production," 96th Annual Conference, April 4-6, 2022, K U Leuven, Belgium 321208, Agricultural Economics Society - AES.
    3. Yuanming Xie & Zemeng Ma & Mingjie Fang & Weiguo Liu & Feiyan Yu & Jiajing Tian & Shuoxin Zhang & Yan Yan, 2023. "Analysis of Net Primary Productivity of Retired Farmlands in the Grain-for-Green Project in China from 2011 to 2020," Land, MDPI, vol. 12(5), pages 1-16, May.
    4. Zhangxuan Qin & Xiaolin Liu & Xiaoyan Lu & Mengfei Li & Fei Li, 2022. "Grain Production Space Reconstruction and Its Influencing Factors in the Loess Plateau," IJERPH, MDPI, vol. 19(10), pages 1-18, May.
    5. Robert Finger, 2023. "Digital innovations for sustainable and resilient agricultural systems," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(4), pages 1277-1309.
    6. Wang, Liye & Zhang, Siyu & Xiong, Qiangqiang & Liu, Yu & Liu, Yanfang & Liu, Yaolin, 2022. "Spatiotemporal dynamics of cropland expansion and its driving factors in the Yangtze River Economic Belt: A nuanced analysis at the county scale," Land Use Policy, Elsevier, vol. 119(C).
    7. Yibin, Wang & Jian, Wang & Fei, Li & Xiaolin, Liu & Dan, Zhao, 2024. "Can the transition of multiple cropping systems affect the cropland change?," Agricultural Systems, Elsevier, vol. 214(C).
    8. Senkai Xie & Wenjia Zhang & Yi Zhao & De Tong, 2022. "Extracting Land Use Change Patterns of Rural Town Settlements with Sequence Alignment Method," Land, MDPI, vol. 11(2), pages 1-17, February.
    9. Tao Xiang & Tariq H. Malik & Jack W. Hou & Jiliang Ma, 2022. "The Impact of Climate Change on Agricultural Total Factor Productivity: A Cross-Country Panel Data Analysis, 1961–2013," Agriculture, MDPI, vol. 12(12), pages 1-20, December.
    10. Dong Han & Jiajun Qiao & Qiankun Zhu & Jie Xiao & Yuling Ma, 2022. "Endogenous Driving Forces in Ecology-Production-Living Space Changes at Micro-Scale: A Mountain Town Example in Inland China," Land, MDPI, vol. 11(12), pages 1-30, December.
    11. Feifei Jiang & Fu Chen & Yan Sun & Ziyi Hua & Xinhua Zhu & Jing Ma, 2023. "Spatiotemporal Pattern and Driving Mechanism of Cultivated Land Use Transition in China," Land, MDPI, vol. 12(10), pages 1-20, September.
    12. Tiangui Lv & Shufei Fu & Xinmin Zhang & Guangdong Wu & Han Hu & Junfeng Tian, 2022. "Assessing Cultivated Land–Use Transition in the Major Grain-Producing Areas of China Based on an Integrated Framework," Land, MDPI, vol. 11(10), pages 1-23, September.
    13. Yiming Wei & Hongwei Wang & Mengqi Xue & Yucong Yin & Tiantian Qian & Fangrui Yu, 2022. "Spatial and Temporal Evolution of Land Use and the Response of Habitat Quality in Wusu, China," IJERPH, MDPI, vol. 20(1), pages 1-21, December.
    14. Schmitt, Jonas & Offermann, Frank & Söder, Mareike & Frühauf, Cathleen & Finger, Robert, 2022. "Extreme weather events cause significant crop yield losses at the farm level in German agriculture," Food Policy, Elsevier, vol. 112(C).
    15. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    16. Kedi Liu & Ranran Wang & Inge Schrijver & Rutger Hoekstra, 2024. "Can we project well-being? Towards integral well-being projections in climate models and beyond," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    17. El-Saied E. Metwaly & Hatim M. Al-Yasi & Esmat F. Ali & Hamada A. Farouk & Saad Farouk, 2022. "Deteriorating Harmful Effects of Drought in Cucumber by Spraying Glycinebetaine," Agriculture, MDPI, vol. 12(12), pages 1-16, December.
    18. repec:ags:aaea22:335489 is not listed on IDEAS
    19. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    20. Teerachai Amnuaylojaroen & Pavinee Chanvichit, 2024. "Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia," Resources, MDPI, vol. 13(3), pages 1-18, March.
    21. N. Zhang & H. Huang, 2018. "Assessment of world disaster severity processed by Gaussian blur based on large historical data: casualties as an evaluating indicator," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 173-187, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13338-:d:1233780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.