IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i19p10053-d642492.html
   My bibliography  Save this article

Comprehensive Insights into Spatial-Temporal Evolution Patterns, Dominant Factors of NDVI from Pixel Scale, as a Case of Shaanxi Province, China

Author

Listed:
  • Hongliang Gu

    (School of Resources and Environment, Anqing Normal University, Anqing 246011, China)

  • Min Chen

    (School of Resources and Environment, Anqing Normal University, Anqing 246011, China)

Abstract

Based on long term NDVI (1982–2015), climate, topographic factors, and land use type data information in Shaanxi Province, multiple methods (linear regression, partial and multiple correlation analysis, redundancy analysis and boosted regression trees method) were conducted to evaluate the spatial-temporal change footprints and driving mechanisms in the pixel scale. The results demonstrated that (1) the overall annual average and seasonal NDVI in this region showed a fluctuating upward trend, especially in spring. The difference between the end of season (eos) and start of season (sos) gradually increased, indicating the occurrence of temporal “greening” across most Shaanxi Province. (2) The overall spatial distribution of annual mean NDVI in Shaanxi Province was prominent in the south and low in the north, and 98.83% of the areas had a stable and increasing trend. Pixel scale analysis reflected the spatial continuity and heterogeneity of NDVI evolution. (3) Trend and breakpoint evaluation results showed that evolutionary trends were not homogeneous. There were obvious breakpoints in the latitude direction of NDVI evolution in Shaanxi Province, especially between 32–33 °N and in the north of 37 °N. (4) Compared with precipitation, the annual average temperature was significantly correlated with the vegetation indices (annual NDVI, max NDVI, time integrated NDVI) and phenology metrics (sos, eos). (5) Considering the interaction between environmental variables, the NDVI evolution was dominated by the combined influence of climate and geographic location factors in most areas.

Suggested Citation

  • Hongliang Gu & Min Chen, 2021. "Comprehensive Insights into Spatial-Temporal Evolution Patterns, Dominant Factors of NDVI from Pixel Scale, as a Case of Shaanxi Province, China," IJERPH, MDPI, vol. 18(19), pages 1-27, September.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:19:p:10053-:d:642492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/19/10053/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/19/10053/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xianglin Huang & Tingbin Zhang & Guihua Yi & Dong He & Xiaobing Zhou & Jingji Li & Xiaojuan Bie & Jiaqing Miao, 2019. "Dynamic Changes of NDVI in the Growing Season of the Tibetan Plateau During the Past 17 Years and Its Response to Climate Change," IJERPH, MDPI, vol. 16(18), pages 1-21, September.
    2. Yuzhen Zhang & Shunlin Liang & Zhiqiang Xiao, 2020. "Observed Vegetation Greening and Its Relationships with Cropland Changes and Climate in China," Land, MDPI, vol. 9(8), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lina Tang & Alimujiang Kasimu & Haitao Ma & Mamattursun Eziz, 2023. "Monitoring Multi-Scale Ecological Change and Its Potential Drivers in the Economic Zone of the Tianshan Mountains’ Northern Slopes, Xinjiang, China," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    2. Yan Li & Jie Gong & Yunxia Zhang & Bingli Gao, 2022. "NDVI-Based Greening of Alpine Steppe and Its Relationships with Climatic Change and Grazing Intensity in the Southwestern Tibetan Plateau," Land, MDPI, vol. 11(7), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:19:p:10053-:d:642492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.