IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i5p152-d358405.html
   My bibliography  Save this article

Sustainable Residential Building Considerations for Rural Areas: A Case Study

Author

Listed:
  • Lawrence Fulton

    (Health Administration, Texas State University, San Marcos, TX 78666, USA)

  • Bradley Beauvais

    (Health Administration, Texas State University, San Marcos, TX 78666, USA)

  • Matthew Brooks

    (Health Administration, Texas State University, San Marcos, TX 78666, USA)

  • Scott Kruse

    (Health Administration, Texas State University, San Marcos, TX 78666, USA)

  • Kimberly Lee

    (Health Administration, Texas State University, San Marcos, TX 78666, USA)

Abstract

Intelligent use of rural residential land and sustainable construction is inexorably linked to cost; however, options exist that are eco-friendly and have a positive return on investment. In 2011, a research residence was built to evaluate various land-use and sustainable components. This Texas house has subsequently been used for both residential and research purposes. The purpose of this case study was to evaluate break-even construction considerations, to assess environmental impacts, and to evaluate qualitatively efficacy of sustainable options incorporated in the research residence. Some of the specific components discussed are home site placement (directional positioning); materiel acquisition (transportation); wood product minimization; rainwater harvesting; wastewater management; grid-tied solar array power; electric car charging via a solar array; geothermal heating and cooling; insulation selection; windows, fixtures, and appliance selection; and on-demand electric water heaters for guest areas. This study seeks to identify the impact of proper land use and sustainable techniques on the environment and return-on-investment in rural areas. Break-even and 15-year Net Present Value (NPV) analysis at 3% and 5% cost of capital were used to evaluate traditional construction, partially sustainable construction, and fully sustainable construction options for the case study house, which was built sustainably. The additional cost of sustainable construction is estimated at $54,329. At 3%, the analysis suggests a 15-year NPV of $334,355 (traditional) versus $250,339 million (sustainable) for a difference of $84K. At 5% cost of capital, that difference falls to $63K. The total estimated annual difference in carbon emissions is 4.326 million g/CO 2 e for this research residence. The results indicate that good choices for quick return-on-investment in rural construction would be the use of engineered lumber, Icynene foam, and Energy Star windows and doors. Medium-term options include photovoltaic systems (PVS) capable of powering the home and an electric car. Sustainable construction options should positively affect the environment and the pocketbook. Regulations and code should require adoption of short-range, break-even sustainable solutions in residential construction.

Suggested Citation

  • Lawrence Fulton & Bradley Beauvais & Matthew Brooks & Scott Kruse & Kimberly Lee, 2020. "Sustainable Residential Building Considerations for Rural Areas: A Case Study," Land, MDPI, vol. 9(5), pages 1-25, May.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:5:p:152-:d:358405
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/5/152/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/5/152/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mansi Jain & Thomas Hoppe & Hans Bressers, 2017. "A Governance Perspective on Net Zero Energy Building Niche Development in India: The Case of New Delhi," Energies, MDPI, vol. 10(8), pages 1-22, August.
    2. Bruegge, Chris & Carrión-Flores, Carmen & Pope, Jaren C., 2016. "Does the housing market value energy efficient homes? Evidence from the energy star program," Regional Science and Urban Economics, Elsevier, vol. 57(C), pages 63-76.
    3. Lawrence Fulton, 2020. "A Publicly Available Simulation of Battery Electric, Hybrid Electric, and Gas-Powered Vehicles," Energies, MDPI, vol. 13(10), pages 1-15, May.
    4. Yixuan Wang & Yajuan Yu & Kai Huang & Baojun Tang, 2019. "From the Perspective of Battery Production: Energy–Environment–Economy (3E) Analysis of Lithium-Ion Batteries in China," Sustainability, MDPI, vol. 11(24), pages 1-12, December.
    5. Kross, B.C. & Hallberg, G.R. & Bruner, D.R. & Cherryholmes, K. & Johnson, J.K., 1993. "The nitrate contamination of private well water in Iowa," American Journal of Public Health, American Public Health Association, vol. 83(2), pages 270-272.
    6. Lawrence V. Fulton, 2018. "A Simulation of Rainwater Harvesting Design and Demand-Side Controls for Large Hospitals," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    7. Philip Fearnside & Daniel Lashof & Pedro Moura-Costa, 2000. "Accounting for time in Mitigating Global Warming through land-use change and forestry," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 5(3), pages 239-270, September.
    8. Lawrence Fulton & Bradley Beauvais & Matthew Brooks & Clemens Scott Kruse & Kimberly Lee, 2020. "A Publicly Available Cost Simulation of Sustainable Construction Options for Residential Houses," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    9. Kuczyński, T. & Staszczuk, A., 2020. "Experimental study of the influence of thermal mass on thermal comfort and cooling energy demand in residential buildings," Energy, Elsevier, vol. 195(C).
    10. McCann, Laura, 2013. "Transaction costs and environmental policy design," Ecological Economics, Elsevier, vol. 88(C), pages 253-262.
    11. Coffman, Makena & Bernstein, Paul & Wee, Sherilyn, 2017. "Integrating electric vehicles and residential solar PV," Transport Policy, Elsevier, vol. 53(C), pages 30-38.
    12. Rochelle Ade & Michael Rehm, 2020. "Reaching for the stars: green construction cost premiums for Homestar certification," Construction Management and Economics, Taylor & Francis Journals, vol. 38(6), pages 570-580, June.
    13. Sadineni, Suresh B. & Madala, Srikanth & Boehm, Robert F., 2011. "Passive building energy savings: A review of building envelope components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3617-3631.
    14. Janet L. Reyna & Mikhail V. Chester, 2017. "Energy efficiency to reduce residential electricity and natural gas use under climate change," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Nieto Masot & José Luis Gurría Gascón, 2021. "Sustainable Rural Development: Strategies, Good Practices and Opportunities," Land, MDPI, vol. 10(4), pages 1-5, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lawrence Fulton & Bradley Beauvais & Matthew Brooks & Clemens Scott Kruse & Kimberly Lee, 2020. "A Publicly Available Cost Simulation of Sustainable Construction Options for Residential Houses," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    2. Nusrat Jannat & Aseel Hussien & Badr Abdullah & Alison Cotgrave, 2020. "A Comparative Simulation Study of the Thermal Performances of the Building Envelope Wall Materials in the Tropics," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    3. Rajesh Singh & Quinn Weninger, 2017. "Cap-and-trade under transactions costs and factor irreversibility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 64(2), pages 357-407, August.
    4. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    5. Aritta Suwarno & Meine van Noordwijk & Hans-Peter Weikard & Desi Suyamto, 2018. "Indonesia’s forest conversion moratorium assessed with an agent-based model of Land-Use Change and Ecosystem Services (LUCES)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(2), pages 211-229, February.
    6. Mao, Ning & Pan, Dongmei & Li, Zhao & Xu, Yingjie & Song, Mengjie & Deng, Shiming, 2017. "A numerical study on influences of building envelope heat gain on operating performances of a bed-based task/ambient air conditioning (TAC) system in energy saving and thermal comfort," Applied Energy, Elsevier, vol. 192(C), pages 213-221.
    7. H. Damon Matthews & Kirsten Zickfeld & Alexander Koch & Amy Luers, 2023. "Accounting for the climate benefit of temporary carbon storage in nature," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Wang, Manyu & Wei, Chu, 2024. "Toward sustainable heating: Assessment of the carbon mitigation potential from residential heating in northern rural China," Energy Policy, Elsevier, vol. 190(C).
    9. Oscar J. Cacho & Robyn L. Hean & Russell M. Wise, 2003. "Carbon‐accounting methods and reforestation incentives," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(2), pages 153-179, June.
    10. Hayashida, Sherilyn & La Croix, Sumner & Coffman, Makena, 2021. "Understanding changes in electric vehicle policies in the U.S. states, 2010–2018," Transport Policy, Elsevier, vol. 103(C), pages 211-223.
    11. Robert C. Vella & Charles Yousif & Francisco Javier Rey Martinez & Javier María Rey Hernandez, 2022. "Prioritising Passive Measures over Air Conditioning to Achieve Thermal Comfort in Mediterranean Baroque Churches," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    12. Soulios, V. & Loonen, R.C.G.M. & Metavitsiadis, V. & Hensen, J.L.M., 2018. "Computational performance analysis of overheating mitigation measures in parked vehicles," Applied Energy, Elsevier, vol. 231(C), pages 635-644.
    13. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric, 2019. "Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in Los Angeles County," Energy Policy, Elsevier, vol. 128(C), pages 943-953.
    14. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    15. Chau, C.K. & Xu, J.M. & Leung, T.M. & Ng, W.Y., 2017. "Evaluation of the impacts of end-of-life management strategies for deconstruction of a high-rise concrete framed office building," Applied Energy, Elsevier, vol. 185(P2), pages 1595-1603.
    16. Lei, Jiawei & Yang, Jinglei & Yang, En-Hua, 2016. "Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore," Applied Energy, Elsevier, vol. 162(C), pages 207-217.
    17. Baudry, Marc & Faure, Anouk & Quemin, Simon, 2021. "Emissions trading with transaction costs," Journal of Environmental Economics and Management, Elsevier, vol. 108(C).
    18. Best, Rohan & Burke, Paul J. & Nishitateno, Shuhei, 2019. "Evaluating the effectiveness of Australia's Small-scale Renewable Energy Scheme for rooftop solar," Energy Economics, Elsevier, vol. 84(C).
    19. Miranda, Bruno Varella & de Oliveira, Gustavo Magalhães, 2023. "Assessing the performance of voluntary environmental agreements under high monitoring costs: Evidence from the Brazilian Amazon," Ecological Economics, Elsevier, vol. 214(C).
    20. Andrea Pianella & Lu Aye & Zhengdong Chen & Nicholas S. G. Williams, 2017. "Substrate Depth, Vegetation and Irrigation Affect Green Roof Thermal Performance in a Mediterranean Type Climate," Sustainability, MDPI, vol. 9(8), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:5:p:152-:d:358405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.