IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i5p146-d356683.html
   My bibliography  Save this article

Key Roles for Landscape Ecology in Transformative Agriculture Using Aotearoa—New Zealand as a Case Example

Author

Listed:
  • Diane Pearson

    (Farmed Landscapes Research Centre, School of Agriculture and Environment, College of Sciences, Massey University, Palmerston North 4474, New Zealand)

Abstract

Aotearoa—New Zealand (NZ) is internationally renowned for picturesque landscapes and agricultural products. Agricultural intensification has been economically beneficial to NZ but has implications for its clean green image. Contaminated waterways, high carbon emissions, and extensive soil erosion demonstrate the downside of high stocking rates and land clearing. Transformative farming systems are required to address the challenge of balancing production with the environment. Whilst navigating through the process of change, farmers need to be supported to make informed decisions at the farm and landscape scale. Landscape ecology (LE) is ideally positioned to inform the development of future farming landscapes and provide a scientific context to the criteria against which land-related information can be evaluated. However, to do this effectively, LE needs to demonstrate that it can link theory with practice. Using NZ as a case example, this paper discusses the key roles for LE in future farming systems. It looks at the way LE can help quantify the state of the landscape, provide support towards the co-creation of alternative futures, and assist with the inclusion of land-related information into design and planning to ensure mitigation and adaption responses assist in the transformation of farming systems for sustainable outcomes.

Suggested Citation

  • Diane Pearson, 2020. "Key Roles for Landscape Ecology in Transformative Agriculture Using Aotearoa—New Zealand as a Case Example," Land, MDPI, vol. 9(5), pages 1-25, May.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:5:p:146-:d:356683
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/5/146/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/5/146/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hertel, Thomas W., 2015. "The Challenges of Sustainably Feeding a Growing Planet," 2015 Conference (59th), February 10-13, 2015, Rotorua, New Zealand 202525, Australian Agricultural and Resource Economics Society.
    2. Guopeng Jiang & Miles Grafton & Diane Pearson & Mike Bretherton & Allister Holmes, 2019. "Integration of Precision Farming Data and Spatial Statistical Modelling to Interpret Field-Scale Maize Productivity," Agriculture, MDPI, vol. 9(11), pages 1-22, November.
    3. Devan Allen McGranahan, 2014. "Ecologies of Scale: Multifunctionality Connects Conservation and Agriculture across Fields, Farms, and Landscapes," Land, MDPI, vol. 3(3), pages 1-31, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diane Pearson & Julian Gorman & Richard Aspinall, 2022. "Multiple Roles for Landscape Ecology in Future Farming Systems: An Editorial Overview," Land, MDPI, vol. 11(2), pages 1-5, February.
    2. Duy X. Tran & Diane Pearson & Alan Palmer & David Gray, 2020. "Developing a Landscape Design Approach for the Sustainable Land Management of Hill Country Farms in New Zealand," Land, MDPI, vol. 9(6), pages 1-29, June.
    3. Andrés A. Salazar & Eduardo C. Arellano & Andrés Muñoz-Sáez & Marcelo D. Miranda & Fabiana Oliveira da Silva & Natalia B. Zielonka & Liam P. Crowther & Vinina Silva-Ferreira & Patricia Oliveira-Rebouc, 2021. "Restoration and Conservation of Priority Areas of Caatinga’s Semi-Arid Forest Remnants Can Support Connectivity within an Agricultural Landscape," Land, MDPI, vol. 10(6), pages 1-20, May.
    4. Tran, Duy X. & Pearson, Diane & Palmer, Alan & Gray, David & Lowry, John & Dominati, Estelle J., 2022. "A comprehensive spatially-explicit analysis of agricultural landscape multifunctionality using a New Zealand hill country farm case study," Agricultural Systems, Elsevier, vol. 203(C).
    5. Diane Pearson, 2021. "Lifestyle Properties, Ecosystem Services, and Biodiversity Protection in Peri-Urban Aotearoa–New Zealand: A Case Study from Peri-Urban Palmerston North," Land, MDPI, vol. 10(12), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duy X. Tran & Diane Pearson & Alan Palmer & David Gray, 2020. "Developing a Landscape Design Approach for the Sustainable Land Management of Hill Country Farms in New Zealand," Land, MDPI, vol. 9(6), pages 1-29, June.
    2. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    3. Amanda Silva‐Parra & Juan Manuel Trujillo‐González & Eric C. Brevik, 2021. "Greenhouse gas balance and mitigation potential of agricultural systems in Colombia: A systematic analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 554-572, June.
    4. Fabiellen C. Pereira & Stuart Charters & Carol M. S. Smith & Thomas M. R. Maxwell & Pablo Gregorini, 2023. "A Geospatial Modelling Approach to Assess the Capability of High-Country Stations in Delivering Ecosystem Services," Land, MDPI, vol. 12(6), pages 1-18, June.
    5. Cao, Yan & Cheng, Sheng & Li, Xinran, 2024. "Co-movements between heterogeneous crude oil and food markets: Does temperature change really matter?," Research in International Business and Finance, Elsevier, vol. 67(PB).
    6. Ignacio Cazcarro & Carlos A. López‐Morales & Faye Duchin, 2019. "The global economic costs of substituting dietary protein from fish with meat, grains and legumes, and dairy," Journal of Industrial Ecology, Yale University, vol. 23(5), pages 1159-1171, October.
    7. Meunier, Clémentine & Casagrande, Marion & Rosiès, Blandine & Bedoussac, Laurent & Topp, Cairistiona F.E. & Walker, Robin L. & Watson, Christine A. & Martin, Guillaume, 2022. "Interplay: A game for the participatory design of locally adapted cereal–legume intercrops," Agricultural Systems, Elsevier, vol. 201(C).
    8. Gebreegziabher Zenebe & van Kooten G. Cornelis, 2020. "Commodity Storage, Post-Harvest Losses, and Food Security: Panel Data Evidence from Ethiopia," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 18(1), pages 1-11, January.
    9. Priefer, Carmen & Jörissen, Juliane & Bräutigam, Klaus-Rainer, 2016. "Food waste prevention in Europe – A cause-driven approach to identify the most relevant leverage points for action," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 155-165.
    10. Xiaoling Wu & Jeffrey P. Walker & Vanessa Wong, 2023. "Proximal Soil Moisture Sensing for Real-Time Water Delivery Control: Exploratory Study over a Potato Farm," Agriculture, MDPI, vol. 13(7), pages 1-10, June.
    11. Cai, Yongyang & Golub, Alla & Hertel, Thomas & Judd, Kenneth, 2016. "Agricultural R&D policy under climate and economic uncertainty," Conference papers 332729, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Daniel El Chami & André Daccache & Maroun El Moujabber, 2020. "How Can Sustainable Agriculture Increase Climate Resilience? A Systematic Review," Sustainability, MDPI, vol. 12(8), pages 1-23, April.
    13. Ha Quang Thinh Ngo & Thanh Phuong Nguyen & Hung Nguyen, 2020. "Research on a Low-Cost, Open-Source, and Remote Monitoring Data Collector to Predict Livestock’s Habits Based on Location and Auditory Information: A Case Study from Vietnam," Agriculture, MDPI, vol. 10(5), pages 1-26, May.
    14. Nxumalo Gift Siphiwe & Tamás Magyar & János Tamás & Attila Nagy, 2024. "Modelling Soil Moisture Content with Hydrus 2D in a Continental Climate for Effective Maize Irrigation Planning," Agriculture, MDPI, vol. 14(8), pages 1-23, August.
    15. Ferrarini, Andrea & Serra, Paolo & Almagro, María & Trevisan, Marco & Amaducci, Stefano, 2017. "Multiple ecosystem services provision and biomass logistics management in bioenergy buffers: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 277-290.
    16. Xiang, Tao & Malik, Tariq H. & Nielsen, Klaus, 2020. "The impact of population pressure on global fertiliser use intensity, 1970–2011: An analysis of policy-induced mediation," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    17. Etea Ibe & Obodoechi Divine Ndubuisi, . "Greenhouse Gas Emission Reduction in Agriculture: A Situation for Africa," Journal of Economic and Sustainable Growth 2, Office Of The Chief Economist, Development Bank of Nigeria.
    18. Clapp, Jennifer & Moseley, William G. & Burlingame, Barbara & Termine, Paola, 2022. "Viewpoint: The case for a six-dimensional food security framework," Food Policy, Elsevier, vol. 106(C).
    19. Zewdu Ayalew Abro & Moti Jaleta & Matin Qaim, 2017. "Yield effects of rust-resistant wheat varieties in Ethiopia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(6), pages 1343-1357, December.
    20. H. Hengsdijk & W. J. Boer, 2017. "Post-harvest management and post-harvest losses of cereals in Ethiopia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(5), pages 945-958, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:5:p:146-:d:356683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.