IDEAS home Printed from https://ideas.repec.org/a/spr/ssefpa/v9y2017i6d10.1007_s12571-017-0735-6.html
   My bibliography  Save this article

Yield effects of rust-resistant wheat varieties in Ethiopia

Author

Listed:
  • Zewdu Ayalew Abro

    (University of Goettingen)

  • Moti Jaleta

    (International Maize and Wheat Improvement Center (CIMMYT))

  • Matin Qaim

    (University of Goettingen)

Abstract

Breeding crops for disease resistance is a sustainable approach to reduce yield losses. While significant research on the adoption and impacts of improved crop varieties exists, most studies have analyzed yield effects in general without distinguishing between different varietal traits and characteristics. Here, panel data from wheat farmers in Ethiopia were used to compare improved varieties that are resistant to stripe rust (caused by Puccinia striiformis f. sp. tritici) with improved susceptible and traditional susceptible varieties. Production function estimates suggest that improved resistant varieties raise effective yields by 8% in comparison to local susceptible varieties. The yield difference between improved resistant and improved susceptible varieties is positive but small because rust levels were not very high in the years under study. However, under drought and other abiotic stresses, improved varieties – with and without resistance to stripe rust – performed notably worse than local varieties. The worse performance under abiotic stress may explain why many farmers have recently switched back to growing traditional varieties. Sustainable adoption needs a combination of various traits in the same varieties, including high yield potential, grain quality, disease resistance and tolerance to drought and other production stresses.

Suggested Citation

  • Zewdu Ayalew Abro & Moti Jaleta & Matin Qaim, 2017. "Yield effects of rust-resistant wheat varieties in Ethiopia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(6), pages 1343-1357, December.
  • Handle: RePEc:spr:ssefpa:v:9:y:2017:i:6:d:10.1007_s12571-017-0735-6
    DOI: 10.1007/s12571-017-0735-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12571-017-0735-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12571-017-0735-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Matin Qaim & Arjunan Subramanian & Gopal Naik & David Zilberman, 2006. "Adoption of Bt Cotton and Impact Variability: Insights from India," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 28(1), pages 48-58.
    2. Amartya K. Sen, 1966. "Peasants and Dualism with or without Surplus Labor," Journal of Political Economy, University of Chicago Press, vol. 74(5), pages 425-425.
    3. Hailemariam Teklewold & Menale Kassie & Bekele Shiferaw, 2013. "Adoption of Multiple Sustainable Agricultural Practices in Rural Ethiopia," Journal of Agricultural Economics, Wiley Blackwell, vol. 64(3), pages 597-623, September.
    4. Vijesh Krishna & Matin Qaim & David Zilberman, 2016. "Transgenic crops, production risk and agrobiodiversity," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(1), pages 137-164.
    5. Salvatore Falco & Marcella Veronesi, 2018. "Managing Environmental Risk in Presence of Climate Change: The Role of Adaptation in the Nile Basin of Ethiopia," Natural Resource Management and Policy, in: Leslie Lipper & Nancy McCarthy & David Zilberman & Solomon Asfaw & Giacomo Branca (ed.), Climate Smart Agriculture, pages 497-526, Springer.
    6. Arturo Aguilar & Eliana Carranza & Markus Goldstein & Talip Kilic & Gbemisola Oseni, 2015. "Decomposition of gender differentials in agricultural productivity in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 46(3), pages 311-334, May.
    7. Mather, D. L. & Bernsten, R. & Rosas, J. C. & Viana Ruano, A. & Escoto, D., 2003. "The economic impact of bean disease resistance research in Honduras," Agricultural Economics, Blackwell, vol. 29(3), pages 343-352, December.
    8. Barrett, Christopher B. & Bellemare, Marc F. & Hou, Janet Y., 2010. "Reconsidering Conventional Explanations of the Inverse Productivity-Size Relationship," World Development, Elsevier, vol. 38(1), pages 88-97, January.
    9. Octavio A. Ramirez & Sukant Misra & James Field, 2003. "Crop-Yield Distributions Revisited," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(1), pages 108-120.
    10. Kilic, Talip & Zezza, Alberto & Carletto, Calogero & Savastano, Sara, 2017. "Missing(ness) in Action: Selectivity Bias in GPS-Based Land Area Measurements," World Development, Elsevier, vol. 92(C), pages 143-157.
    11. S. Savary & S. Bregaglio & L. Willocquet & D. Gustafson & D. Mason D’Croz & A. Sparks & N. Castilla & A. Djurle & C. Allinne & Mamta Sharma & V. Rossi & L. Amorim & A. Bergamin & J. Yuen & P. Esker & , 2017. "Crop health and its global impacts on the components of food security," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(2), pages 311-327, April.
    12. Carletto, Calogero & Savastano, Sara & Zezza, Alberto, 2013. "Fact or artifact: The impact of measurement errors on the farm size–productivity relationship," Journal of Development Economics, Elsevier, vol. 103(C), pages 254-261.
    13. Philip G. Pardey & Julian M. Alston & Connie Chan-Kang & Eduardo C. Magalhães & Stephen A. Vosti, 2006. "International and Institutional R&D Spillovers: Attribution of Benefits among Sources for Brazil's New Crop Varieties," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(1), pages 104-123.
    14. Yakubu Abdul-Salam & Euan Phimister, 2017. "Efficiency Effects of Access to Information on Small-scale Agriculture: Empirical Evidence from Uganda using Stochastic Frontier and IRT Models," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(2), pages 494-517, June.
    15. Menale Kassie & Hailemariam Teklewold & Paswel Marenya & Moti Jaleta & Olaf Erenstein, 2015. "Production Risks and Food Security under Alternative Technology Choices in Malawi: Application of a Multinomial Endogenous Switching Regression," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(3), pages 640-659, September.
    16. Marasas, C. N. & Smale, M. & Singh, R. P., 2003. "The economic impact of productivity maintenance research: breeding for leaf rust resistance in modern wheat," Agricultural Economics, Blackwell, vol. 29(3), pages 253-263, December.
    17. Christopher B. Barrett & Christine M. Moser & Oloro V. McHugh & Joeli Barison, 2004. "Better Technology, Better Plots, or Better Farmers? Identifying Changes in Productivity and Risk among Malagasy Rice Farmers," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 869-888.
    18. Salvatore Di Falco & Marcella Veronesi, 2014. "Managing Environmental Risk in Presence of Climate Change: The Role of Adaptation in the Nile Basin of Ethiopia," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(4), pages 553-577, April.
    19. Hertel, Thomas W., 2015. "The Challenges of Sustainably Feeding a Growing Planet," 2015 Conference (59th), February 10-13, 2015, Rotorua, New Zealand 202525, Australian Agricultural and Resource Economics Society.
    20. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    21. Mather, David & Bernsten, Richard H. & Rosas, Juan Carlos & Ruano, Abelardo Viana & Escoto, Danilo & Martinez, Julio, 2003. "The Impact Of Bean Research In Honduras," Staff Paper Series 11496, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    22. Sophia Rabe-Hesketh & Anders Skrondal, 2012. "Multilevel and Longitudinal Modeling Using Stata, 3rd Edition," Stata Press books, StataCorp LP, edition 3, number mimus2, March.
    23. Douglas Gollin & Michael Morris & Derek Byerlee, 2005. "Technology Adoption in Intensive Post-Green Revolution Systems," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(5), pages 1310-1316.
    24. Matuschke, Ira & Mishra, Ritesh R. & Qaim, Matin, 2007. "Adoption and Impact of Hybrid Wheat in India," World Development, Elsevier, vol. 35(8), pages 1422-1435, August.
    25. Salvatore Di Falco & Jean‐Paul Chavas & Melinda Smale, 2007. "Farmer management of production risk on degraded lands: the role of wheat variety diversity in the Tigray region, Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 36(2), pages 147-156, March.
    26. George E. Battese, 1997. "A Note On The Estimation Of Cobb‐Douglas Production Functions When Some Explanatory Variables Have Zero Values," Journal of Agricultural Economics, Wiley Blackwell, vol. 48(1‐3), pages 250-252, January.
    27. Marasas, C.N. & Smale, Melinda & Singh, R.P., 2004. "The Economic Impact in Developing Countries of Leaf Rust Resistance Breeding in CIMMYT-Related Spring Bread Wheat," Economics Program Papers 48768, CIMMYT: International Maize and Wheat Improvement Center.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. HAILU, Hiwot & TOLOSSA, Degefa, 2022. "Impacts Of Adopting Improved Wheat Varieties On Household Food Security In Girar Jarso District, Ethiopia," Review of Agricultural and Applied Economics (RAAE), Faculty of Economics and Management, Slovak Agricultural University in Nitra, vol. 25(1), March.
    2. Teferi, Ermias Tesfaye & Kassie, Girma T. & Pe, Mario Enrico & Fadda, Carlo, 2020. "Are farmers willing to pay for climate related traits of wheat? Evidence from rural parts of Ethiopia," Agricultural Systems, Elsevier, vol. 185(C).
    3. Toba Stephen Olasehinde & Fangbin Qiao & Shiping Mao, 2023. "Impact of Improved Maize Varieties on Production Efficiency in Nigeria: Separating Technology from Managerial Gaps," Agriculture, MDPI, vol. 13(3), pages 1-14, March.
    4. Khed, Vijayalaxmi & Jaleta, Moti & Krishna, Vijesh, 2021. "Seed Delivery Pathways and Farmers’ Access to Improved Wheat Varieties in Ethiopia and India," 2021 Conference, August 17-31, 2021, Virtual 315124, International Association of Agricultural Economists.
    5. Abro, Z.A. & Debela, B.L., 2018. "Technical change through crop improvement: are there synergies or tradeoffs in land productivity and efficiency?," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277086, International Association of Agricultural Economists.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abro, Z.A. & Debela, B.L., 2018. "Technical change through crop improvement: are there synergies or tradeoffs in land productivity and efficiency?," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277086, International Association of Agricultural Economists.
    2. Taylor, Matthew P.H. & Helfand, Steven M., 2021. "The Farm Size – Productivity Relationship in the Wake of Market Reform: An Analysis of Mexican Family Farms," 2021 Conference, August 17-31, 2021, Virtual 315138, International Association of Agricultural Economists.
    3. Michler, Jeffrey D. & Baylis, Kathy & Arends-Kuenning, Mary & Mazvimavi, Kizito, 2019. "Conservation agriculture and climate resilience," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 148-169.
    4. Mauro Vigani & Jonas Kathage, 2019. "To Risk or Not to Risk? Risk Management and Farm Productivity," American Journal of Agricultural Economics, John Wiley & Sons, vol. 101(5), pages 1432-1454, October.
    5. Oumer, Ali M. & Burton, Michael, 2018. "Drivers and Synergies in the Adoption of Sustainable Agricultural Intensification Practices: A Dynamic Perspective," 2018 Annual Meeting, August 5-7, Washington, D.C. 273871, Agricultural and Applied Economics Association.
    6. Asfaw, Solomon & Lipper, Leslie, 2015. "Adaptation to Climate Change and its Impacts on Food Security: Evidence from Niger," 2015 Conference, August 9-14, 2015, Milan, Italy 225667, International Association of Agricultural Economists.
    7. Oyetunde-Usman, Zainab & Shee, Apurba & Abdoulaye, Tahirou, 2021. "Does Simultaneous Adoption of Drought Tolerant Maize Varieties and Organic Manure Impact Productivity and Welfare Outcomes of Farm-households in Nigeria?," 2021 Annual Meeting, August 1-3, Austin, Texas 313954, Agricultural and Applied Economics Association.
    8. Cheng, Shen & Bravo-Ureta, Boris E. & Zheng, Zhihao & Sun, Hao, 2017. "Land Consolidation, Productivity and Technical Efficiency: Evidence from a Cross Section of Farm Households in China," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258533, Agricultural and Applied Economics Association.
    9. Reyes, Byron A. & Maredia, Mywish K. & Bernsten, Richard H. & Rosas, Juan Carlos, 2016. "Opportunities Seized, Opportunities Missed: Differences in the Economic Impact of Bean Research in Five Latin American Countries," Food Security International Development Working Papers 251850, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    10. Yuta J. Masuda & Jonathan R.B. Fisher & Wei Zhang & Carolina Castilla & Timothy M. Boucher & Genowefa Blundo‐Canto, 2020. "A respondent‐driven method for mapping small agricultural plots using tablets and high resolution imagery," Journal of International Development, John Wiley & Sons, Ltd., vol. 32(5), pages 727-748, July.
    11. Mensah, Edouard R. & Kostandini, Genti, 2020. "The inverse farm size-productivity relationship under land size mis-measurement and in the presence of weather and price risks: Panel data evidence from Uganda," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304477, Agricultural and Applied Economics Association.
    12. Deininger,Klaus W. & Xia,Fang & Savastano,Sara, 2015. "Smallholders? land ownership and access in Sub-Saharan Africa: a new landscape ?," Policy Research Working Paper Series 7285, The World Bank.
    13. Helfand, Steven M. & Taylor, Matthew P.H., 2021. "The inverse relationship between farm size and productivity: Refocusing the debate," Food Policy, Elsevier, vol. 99(C).
    14. Hazrana, Jaweriah & Mishra, Ashok K., 2024. "Effect of input subsidies and extension services: Evidence from rice productivity in Bangladesh," Food Policy, Elsevier, vol. 125(C).
    15. Bozzola, Martina & Smale, Melinda, 2020. "The welfare effects of crop biodiversity as an adaptation to climate shocks in Kenya," World Development, Elsevier, vol. 135(C).
    16. Abay, Kibrom A. & Abate, Gashaw T. & Barrett, Christopher B. & Bernard, Tanguy, 2019. "Correlated non-classical measurement errors, ‘Second best’ policy inference, and the inverse size-productivity relationship in agriculture," Journal of Development Economics, Elsevier, vol. 139(C), pages 171-184.
    17. Berger, Thomas, 2015. "Adaptation of farm-households to increasing climate variability in Ethiopia: Bioeconomic modeling of innovation diffusion and policy interventions," 2015 Conference, August 9-14, 2015, Milan, Italy 229062, International Association of Agricultural Economists.
    18. Kilic, Talip & Zezza, Alberto & Carletto, Calogero & Savastano, Sara, 2017. "Missing(ness) in Action: Selectivity Bias in GPS-Based Land Area Measurements," World Development, Elsevier, vol. 92(C), pages 143-157.
    19. Larson,Donald F. & Muraoka,Rie & Otsuka,Keijiro, 2016. "On the central role of small farms in African rural development strategies," Policy Research Working Paper Series 7710, The World Bank.
    20. Gebremariam, Gebrelibanos & Tesfaye, Wondimagegn, 2018. "The heterogeneous effect of shocks on agricultural innovations adoption: Microeconometric evidence from rural Ethiopia," Food Policy, Elsevier, vol. 74(C), pages 154-161.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ssefpa:v:9:y:2017:i:6:d:10.1007_s12571-017-0735-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.