IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i8p1340-d1454003.html
   My bibliography  Save this article

Modelling Soil Moisture Content with Hydrus 2D in a Continental Climate for Effective Maize Irrigation Planning

Author

Listed:
  • Nxumalo Gift Siphiwe

    (Institute of Water and Environmental Management, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Str., 4032 Debrecen, Hungary)

  • Tamás Magyar

    (Institute of Water and Environmental Management, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Str., 4032 Debrecen, Hungary)

  • János Tamás

    (Institute of Water and Environmental Management, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Str., 4032 Debrecen, Hungary)

  • Attila Nagy

    (Institute of Water and Environmental Management, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Str., 4032 Debrecen, Hungary)

Abstract

In light of climate change and limited water resources, optimizing water usage in agriculture is crucial. This study models water productivity to help regional planners address these challenges. We integrate CROPWAT-based reference evapotranspiration (ET o ) with Sentinel 2 data to calculate daily evapotranspiration and water needs for maize using soil and climate data from 2021 to 2023. The HYDRUS model predicted volumetric soil moisture content, validated against observed data. A 2D hydrodynamic model within HYDRUS simulated temporal and spatial variations in soil water distribution for maize at a non-irrigated site in Hungary. The model used soil physical properties and crop evapotranspiration rates as inputs, covering crop development stages from planting to harvest. The model showed good performance, with R² values of 0.65 (10 cm) and 0.81 (60 cm) in 2021, 0.51 (10 cm) and 0.50 (60 cm) in 2022, and 0.38 (10 cm) and 0.72 (60 cm) in 2023. RMSE and NRMSE values indicated reliability. The model revealed water deficits and proposed optimal irrigation schedules to maintain soil moisture between 32.2 and 17.51 V/V%. This integrated approach offers a reliable tool for monitoring soil moisture and developing efficient irrigation systems, aiding maize production’s adaptation to climate change.

Suggested Citation

  • Nxumalo Gift Siphiwe & Tamás Magyar & János Tamás & Attila Nagy, 2024. "Modelling Soil Moisture Content with Hydrus 2D in a Continental Climate for Effective Maize Irrigation Planning," Agriculture, MDPI, vol. 14(8), pages 1-23, August.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1340-:d:1454003
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/8/1340/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/8/1340/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bwambale, Erion & Abagale, Felix K. & Anornu, Geophrey K., 2022. "Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review," Agricultural Water Management, Elsevier, vol. 260(C).
    2. B. Varga & E. Varga-László & S. Bencze & K. Balla & O. Veisz, 2013. "Water use of winter cereals under well-watered and drought-stressed conditions," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 59(4), pages 150-155.
    3. Bastiaanssen, W.G.M. & Allen, R.G. & Droogers, P. & D'Urso, G. & Steduto, P., 2007. "Twenty-five years modeling irrigated and drained soils: State of the art," Agricultural Water Management, Elsevier, vol. 92(3), pages 111-125, September.
    4. Mhawej, Mario & Nasrallah, Ali & Abunnasr, Yaser & Fadel, Ali & Faour, Ghaleb, 2021. "Better irrigation management using the satellite-based adjusted single crop coefficient (aKc) for over sixty crop types in California, USA," Agricultural Water Management, Elsevier, vol. 256(C).
    5. Hertel, Thomas W., 2015. "The Challenges of Sustainably Feeding a Growing Planet," 2015 Conference (59th), February 10-13, 2015, Rotorua, New Zealand 202525, Australian Agricultural and Resource Economics Society.
    6. Zoltán Bakucs & Imre Fertő & Enikő Vígh, 2020. "Crop Productivity and Climatic Conditions: Evidence from Hungary," Agriculture, MDPI, vol. 10(9), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Veronika Fenyves & Tibor Tarnóczi & Zoltán Bács & Dóra Kerezsi & Péter Bajnai & Mihály Szoboszlai, 2022. "Financial efficiency analysis of Hungarian agriculture, fisheries and forestry sector," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(11), pages 413-426.
    2. Barnard, J.H. & van Rensburg, L.D. & Bennie, A.T.P. & du Preez, C.C., 2013. "Simulating water uptake of irrigated field crops from non-saline water table soils: Validation and application of the model SWAMP," Agricultural Water Management, Elsevier, vol. 126(C), pages 19-32.
    3. Zhang, Kefeng & Greenwood, Duncan J. & Spracklen, William P. & Rahn, Clive R. & Hammond, John P. & White, Philip J. & Burns, Ian G., 2010. "A universal agro-hydrological model for water and nitrogen cycles in the soil-crop system SMCR_N: Critical update and further validation," Agricultural Water Management, Elsevier, vol. 97(10), pages 1411-1422, October.
    4. Imran Ali Lakhiar & Haofang Yan & Chuan Zhang & Guoqing Wang & Bin He & Beibei Hao & Yujing Han & Biyu Wang & Rongxuan Bao & Tabinda Naz Syed & Junaid Nawaz Chauhdary & Md. Rakibuzzaman, 2024. "A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints," Agriculture, MDPI, vol. 14(7), pages 1-40, July.
    5. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    6. Amanda Silva‐Parra & Juan Manuel Trujillo‐González & Eric C. Brevik, 2021. "Greenhouse gas balance and mitigation potential of agricultural systems in Colombia: A systematic analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 554-572, June.
    7. Wang, Wendi & Straffelini, Eugenio & Tarolli, Paolo, 2023. "Steep-slope viticulture: The effectiveness of micro-water storage in improving the resilience to weather extremes," Agricultural Water Management, Elsevier, vol. 286(C).
    8. Zhang, Kefeng & Burns, Ian G. & Greenwood, Duncan J. & Hammond, John P. & White, Philip J., 2010. "Developing a reliable strategy to infer the effective soil hydraulic properties from field evaporation experiments for agro-hydrological models," Agricultural Water Management, Elsevier, vol. 97(3), pages 399-409, March.
    9. Ruiqi Zhang & Chunguang Hu & Yucheng Sun, 2024. "Decoding the Characteristics of Ecosystem Services and the Scale Effect in the Middle Reaches of the Yangtze River Urban Agglomeration: Insights for Planning and Management," Sustainability, MDPI, vol. 16(18), pages 1-26, September.
    10. França, Ana Carolina Ferreira & Coelho, Rubens Duarte & da Silva Gundim, Alice & de Oliveira Costa, Jéfferson & Quiloango-Chimarro, Carlos Alberto, 2024. "Effects of different irrigation scheduling methods on physiology, yield, and irrigation water productivity of soybean varieties," Agricultural Water Management, Elsevier, vol. 293(C).
    11. Droogers, P. & Immerzeel, W.W. & Lorite, I.J., 2010. "Estimating actual irrigation application by remotely sensed evapotranspiration observations," Agricultural Water Management, Elsevier, vol. 97(9), pages 1351-1359, September.
    12. Marlet, Serge & Bouksila, Fethi & Bahri, Akissa, 2009. "Water and salt balance at irrigation scheme scale: A comprehensive approach for salinity assessment in a Saharan oasis," Agricultural Water Management, Elsevier, vol. 96(9), pages 1311-1322, September.
    13. Guilherme Jesus & Martim L. Aguiar & Pedro D. Gaspar, 2022. "Computational Tool to Support the Decision in the Selection of Alternative and/or Sustainable Refrigerants," Energies, MDPI, vol. 15(22), pages 1-20, November.
    14. Cao, Yan & Cheng, Sheng & Li, Xinran, 2024. "Co-movements between heterogeneous crude oil and food markets: Does temperature change really matter?," Research in International Business and Finance, Elsevier, vol. 67(PB).
    15. Hadria, R. & Duchemin, B. & Baup, F. & Le Toan, T. & Bouvet, A. & Dedieu, G. & Le Page, M., 2009. "Combined use of optical and radar satellite data for the detection of tillage and irrigation operations: Case study in Central Morocco," Agricultural Water Management, Elsevier, vol. 96(7), pages 1120-1127, July.
    16. Ignacio Cazcarro & Carlos A. López‐Morales & Faye Duchin, 2019. "The global economic costs of substituting dietary protein from fish with meat, grains and legumes, and dairy," Journal of Industrial Ecology, Yale University, vol. 23(5), pages 1159-1171, October.
    17. Bohne, B. & Storchenegger, I.J. & Widmoser, P., 2012. "An easy to use calculation method for weir operations in controlled drainage systems," Agricultural Water Management, Elsevier, vol. 109(C), pages 46-53.
    18. Gebreegziabher Zenebe & van Kooten G. Cornelis, 2020. "Commodity Storage, Post-Harvest Losses, and Food Security: Panel Data Evidence from Ethiopia," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 18(1), pages 1-11, January.
    19. Priefer, Carmen & Jörissen, Juliane & Bräutigam, Klaus-Rainer, 2016. "Food waste prevention in Europe – A cause-driven approach to identify the most relevant leverage points for action," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 155-165.
    20. Xiaoling Wu & Jeffrey P. Walker & Vanessa Wong, 2023. "Proximal Soil Moisture Sensing for Real-Time Water Delivery Control: Exploratory Study over a Potato Farm," Agriculture, MDPI, vol. 13(7), pages 1-10, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1340-:d:1454003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.