IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v23y2019i5p1159-1171.html
   My bibliography  Save this article

The global economic costs of substituting dietary protein from fish with meat, grains and legumes, and dairy

Author

Listed:
  • Ignacio Cazcarro
  • Carlos A. López‐Morales
  • Faye Duchin

Abstract

This paper estimates the costs to replace fish by protein from meat, from grains and legumes, or from dairy products. We apply the World Trade Model, an input–output model of the interactions among major world regions based on comparative advantage, to analyze alternative scenarios about protein content and sources in global diets. We find that the substitution of fish by meat or dairy entails several trillion U.S. dollars of additional costs annually, corresponding to increased use of pastureland, cropland, water, and other factors of production. The price of animal products increases steeply as higher‐cost producers need to come online, yielding rents to owners of scarce resources. By contrast, the global economy adjusts at significantly lower costs to the substitution of fish by grains and legumes, but this dietary shift involves substantial modification in the mix of agricultural output and its geographic distribution. There have been few analytic studies able to associate costs and prices directly with specific combinations of dietary options. We provide a flexible economic framework for analyzing alternative scenarios about the present and future production of food. The focus on the provision of protein for the human diet, allowing for substitutions between land‐based and aquatic sources, lays the groundwork for subsequent closer examinations of the potential future contribution of aquaculture and, in a yet broader framework, the impact of the coming generation of large dams on fish habitat and freshwater ecosystems more generally.

Suggested Citation

  • Ignacio Cazcarro & Carlos A. López‐Morales & Faye Duchin, 2019. "The global economic costs of substituting dietary protein from fish with meat, grains and legumes, and dairy," Journal of Industrial Ecology, Yale University, vol. 23(5), pages 1159-1171, October.
  • Handle: RePEc:bla:inecol:v:23:y:2019:i:5:p:1159-1171
    DOI: 10.1111/jiec.12856
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12856
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12856?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Faye Duchin & Stephen Levine, 2012. "The rectangular sector-by-technology model: not every economy produces every product and some products may rely on several technologies simultaneously," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 1(1), pages 1-11, December.
    2. Neumann, Kathleen & Verburg, Peter H. & Stehfest, Elke & Müller, Christoph, 2010. "The yield gap of global grain production: A spatial analysis," Agricultural Systems, Elsevier, vol. 103(5), pages 316-326, June.
    3. Hertel, Thomas W., 2015. "The Challenges of Sustainably Feeding a Growing Planet," 2015 Conference (59th), February 10-13, 2015, Rotorua, New Zealand 202525, Australian Agricultural and Resource Economics Society.
    4. Helen A. Hamilton & Eva Brod & Ola S. Hanserud & Erik O. Gracey & Magnus I. Vestrum & Anne Bøen & Franciska S. Steinhoff & Daniel B. Müller & Helge Brattebø, 2016. "Investigating Cross-Sectoral Synergies through Integrated Aquaculture, Fisheries, and Agriculture Phosphorus Assessments: A Case Study of Norway," Journal of Industrial Ecology, Yale University, vol. 20(4), pages 867-881, August.
    5. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    6. Faye Duchin, 2005. "A world trade model based on comparative advantage with m regions, n goods, and k factors," Economic Systems Research, Taylor & Francis Journals, vol. 17(2), pages 141-162.
    7. Christoph Schmitz & Hans van Meijl & Page Kyle & Gerald C. Nelson & Shinichiro Fujimori & Angelo Gurgel & Petr Havlik & Edwina Heyhoe & Daniel Mason d'Croz & Alexander Popp & Ron Sands & Andrzej Tabea, 2014. "Land-use change trajectories up to 2050: insights from a global agro-economic model comparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 69-84, January.
    8. Faye Duchin, 2005. "Sustainable Consumption of Food: A Framework for Analyzing Scenarios about Changes in Diets," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 99-114, January.
    9. David Tilman & Michael Clark, 2014. "Global diets link environmental sustainability and human health," Nature, Nature, vol. 515(7528), pages 518-522, November.
    10. Bojana Bajželj & Keith S. Richards & Julian M. Allwood & Pete Smith & John S. Dennis & Elizabeth Curmi & Christopher A. Gilligan, 2014. "Importance of food-demand management for climate mitigation," Nature Climate Change, Nature, vol. 4(10), pages 924-929, October.
    11. Faye Duchin & Stephen H. Levine, 2011. "Sectors May Use Multiple Technologies Simultaneously: The Rectangular Choice-Of-Technology Model With Binding Factor Constraints," Economic Systems Research, Taylor & Francis Journals, vol. 23(3), pages 281-302, March.
    12. Hugo Valin & Ronald D. Sands & Dominique van der Mensbrugghe & Gerald C. Nelson & Helal Ahammad & Elodie Blanc & Benjamin Bodirsky & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe, 2014. "The future of food demand: understanding differences in global economic models," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 51-67, January.
    13. Simon Gosling & Nigel Arnell, 2016. "A global assessment of the impact of climate change on water scarcity," Climatic Change, Springer, vol. 134(3), pages 371-385, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chris Kennedy & Reid Lifset, 2020. "Winners of the 2019 Graedel Prizes: The Journal of Industrial Ecology Best Paper Prizes," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 940-942, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Searchinger, Timothy D. & Beringer, Tim & Strong, Asa, 2017. "Does the world have low-carbon bioenergy potential from the dedicated use of land?," Energy Policy, Elsevier, vol. 110(C), pages 434-446.
    2. Kipling, Richard P. & Bannink, André & Bellocchi, Gianni & Dalgaard, Tommy & Fox, Naomi J. & Hutchings, Nicholas J. & Kjeldsen, Chris & Lacetera, Nicola & Sinabell, Franz & Topp, Cairistiona F.E. & va, 2016. "Modeling European ruminant production systems: Facing the challenges of climate change," Agricultural Systems, Elsevier, vol. 147(C), pages 24-37.
    3. Elke Stehfest & Willem-Jan Zeist & Hugo Valin & Petr Havlik & Alexander Popp & Page Kyle & Andrzej Tabeau & Daniel Mason-D’Croz & Tomoko Hasegawa & Benjamin L. Bodirsky & Katherine Calvin & Jonathan C, 2019. "Key determinants of global land-use projections," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Faye Duchin, 2017. "Resources for Sustainable Economic Development: A Framework for Evaluating Infrastructure System Alternatives," Sustainability, MDPI, vol. 9(11), pages 1-15, November.
    5. Maria Amaya & Faye Duchin & Erich Hester & John C. Little, 2022. "Applying a Coupled Hydrologic-Economic Modeling Framework: Evaluating Alternative Options for Reducing Impacts for Downstream Locations in Response to Upstream Development," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    6. Joseph Palazzo & Roland Geyer & Sangwon Suh, 2020. "A review of methods for characterizing the environmental consequences of actions in life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 815-829, August.
    7. Dilekli, Naci & Cazcarro, Ignacio, 2019. "Testing the SDG targets on water and sanitation using the world trade model with a waste, wastewater, and recycling framework," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    8. Pascale Bazoche & Nicolas Guinet & Sylvaine Poret & Sabrina Teyssier, 2021. "Does the provision of information increase the substitution of animal proteins with plant-based proteins? An experimental investigation into consumer choices," Working Papers SMART 21-07, INRAE UMR SMART.
    9. Brent F. Kim & Keeve E. Nachman & Roni A. Neff & Marie L. Spiker & Raychel E. Santo, 2016. "Concerns re: interpretation and translation of findings in Energy use, blue water footprint, and greenhouse gas emissions for current food consumption patterns and dietary recommendations in the US," Environment Systems and Decisions, Springer, vol. 36(1), pages 104-105, March.
    10. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    11. Chantal Le Mouël & Anna Birgit Milford & Benjamin L. Bodirsky & Susanne Rolinski, 2019. "Drivers of meat consumption," Post-Print hal-02175593, HAL.
    12. Sherman Robinson & Hans Meijl & Dirk Willenbockel & Hugo Valin & Shinichiro Fujimori & Toshihiko Masui & Ron Sands & Marshall Wise & Katherine Calvin & Petr Havlik & Daniel Mason d'Croz & Andrzej Tabe, 2014. "Comparing supply-side specifications in models of global agriculture and the food system," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 21-35, January.
    13. Bazoche, Pascale & Guinet, Nicolas & Poret, Sylvaine & Teyssier, Sabrina, 2023. "Does the provision of information increase the substitution of animal proteins with plant-based proteins? An experimental investigation into consumer choices," Food Policy, Elsevier, vol. 116(C).
    14. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    15. Perino, Grischa & Schwirplies, Claudia, 2022. "Meaty arguments and fishy effects: Field experimental evidence on the impact of reasons to reduce meat consumption," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    16. Jennifer A. Jay & Raffaella D’Auria & J. Cully Nordby & David Andy Rice & David A. Cleveland & Anthony Friscia & Sophie Kissinger & Marc Levis & Hannah Malan & Deepak Rajagopal & Joel R. Reynolds & We, 2019. "Reduction of the carbon footprint of college freshman diets after a food-based environmental science course," Climatic Change, Springer, vol. 154(3), pages 547-564, June.
    17. Jayet, Pierre-Alain & Isbasoiu, Ancuta & De Cara, Stéphane, 2020. "Slaughter cattle to secure food calories and reduce agricultural greenhouse gas emissions? Some prospective estimates for France," Review of Agricultural, Food and Environmental Studies, Institut National de la Recherche Agronomique (INRA), vol. 101(1), July.
    18. Adam C. Castonguay & Stephen Polasky & Matthew H. Holden & Mario Herrero & Daniel Mason-D’Croz & Cecile Godde & Jinfeng Chang & James Gerber & G. Bradd Witt & Edward T. Game & Brett A. Bryan & Brendan, 2023. "Navigating sustainability trade-offs in global beef production," Nature Sustainability, Nature, vol. 6(3), pages 284-294, March.
    19. Dumortier, Jerome & Elobeid, Amani, 2021. "Effects of a carbon tax in the United States on agricultural markets and carbon emissions from land-use change," Land Use Policy, Elsevier, vol. 103(C).
    20. Mario Herrero & Benjamin Henderson & Petr Havlík & Philip K. Thornton & Richard T. Conant & Pete Smith & Stefan Wirsenius & Alexander N. Hristov & Pierre Gerber & Margaret Gill & Klaus Butterbach-Bahl, 2016. "Greenhouse gas mitigation potentials in the livestock sector," Nature Climate Change, Nature, vol. 6(5), pages 452-461, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:23:y:2019:i:5:p:1159-1171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.