IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i1p10-d304592.html
   My bibliography  Save this article

Short Term Effects of Revegetation on Labile Carbon and Available Nutrients of Sodic Soils in Northeast China

Author

Listed:
  • Pujia Yu

    (Chongqing Jinfo Mountain Field Scientific Observation and Research Station for Karst Ecosystem, School of Geographical Sciences, Southwest University, Chongqing 400715, China
    Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
    State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing 400715, China)

  • Xuguang Tang

    (Chongqing Jinfo Mountain Field Scientific Observation and Research Station for Karst Ecosystem, School of Geographical Sciences, Southwest University, Chongqing 400715, China
    State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing 400715, China)

  • Shiwei Liu

    (Chongqing Jinfo Mountain Field Scientific Observation and Research Station for Karst Ecosystem, School of Geographical Sciences, Southwest University, Chongqing 400715, China
    Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
    State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing 400715, China)

  • Wenxin Liu

    (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Aichun Zhang

    (College of Mobile Telecommunications, Chongqing University of Posts and Telecom, Chongqing 401520, China)

Abstract

In response to land degradation and the decline of farmers’ income, some low quality croplands were converted to forage or grassland in Northeast China. However, it is unclear how such land use conversions influence soil nutrients. The primary objective of this study was to investigate the influences of short term conversion of cropland to alfalfa forage, monoculture Leymus chinensis grassland, monoculture Leymus chinensis grassland for hay, and successional regrowth grassland on the labile carbon and available nutrients of saline sodic soils in northeastern China. Soil labile oxidizable carbon and three soil available nutrients (available nitrogen, available phosphorus, and available potassium) were determined at the 0–50 cm depth in the five land uses. Results showed that the treatments of alfalfa forage, monoculture grassland, monoculture grassland for hay, and successional regrowth grassland increased the soil labile oxidizable carbon contents (by 32%, 28%, 15%, and 32%, respectively) and decreased the available nitrogen contents (by 15%, 19%, 34%, and 27%, respectively) in the 0–50 cm depth compared with cropland, while the differences in the contents of available phosphorus and available potassium were less pronounced. No significant differences in stratification ratios of soil labile carbon and available nutrients, the geometric means of soil labile carbon and available nutrients, and the sum scores of soil labile carbon and available nutrients were observed among the five land use treatments except the stratification ratio of 0–10/20–30 cm for available phosphorus and the values of the sum scores of soil labile carbon and available nutrients in the 0–10 cm depth. These findings suggest that short term conversions of cropland to revegetation have limited influences on the soil labile carbon and available nutrients of sodic soils in northeastern China.

Suggested Citation

  • Pujia Yu & Xuguang Tang & Shiwei Liu & Wenxin Liu & Aichun Zhang, 2020. "Short Term Effects of Revegetation on Labile Carbon and Available Nutrients of Sodic Soils in Northeast China," Land, MDPI, vol. 9(1), pages 1-14, January.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:1:p:10-:d:304592
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/1/10/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/1/10/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jian Deng & Pingsheng Sun & Fazhu Zhao & Xinhui Han & Gaihe Yang & Yongzhong Feng & Guangxin Ren, 2016. "Soil C, N, P and Its Stratification Ratio Affected by Artificial Vegetation in Subsoil, Loess Plateau China," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-18, March.
    2. Luciene Gomes & Silvio J. C. Simões & Eloi Lennon Dalla Nora & Eráclito Rodrigues de Sousa-Neto & Maria Cristina Forti & Jean Pierre H. B. Ometto, 2019. "Agricultural Expansion in the Brazilian Cerrado: Increased Soil and Nutrient Losses and Decreased Agricultural Productivity," Land, MDPI, vol. 8(1), pages 1-26, January.
    3. Shurong Yang & Danrui Sheng & Jan Adamowski & Yifan Gong & Jian Zhang & Jianjun Cao, 2018. "Effect of Land Use Change on Soil Carbon Storage over the Last 40 Years in the Shi Yang River Basin, China," Land, MDPI, vol. 7(1), pages 1-9, January.
    4. Rattan Lal, 2015. "Restoring Soil Quality to Mitigate Soil Degradation," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad A. Al-Ghamdi & Yilma Tadesse & Nuru Adgaba & Abdulaziz G. Alghamdi, 2021. "Soil Degradation and Restoration in Southwestern Saudi Arabia through Investigation of Soil Physiochemical Characteristics and Nutrient Status as Indicators," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    2. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2023. "Land Degradation–Desertification in Relation to Farming Practices in India: An Overview of Current Practices and Agro-Policy Perspectives," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    3. Alvyra Slepetiene & Mykola Kochiieru & Linas Jurgutis & Audrone Mankeviciene & Aida Skersiene & Olgirda Belova, 2022. "The Effect of Anaerobic Digestate on the Soil Organic Carbon and Humified Carbon Fractions in Different Land-Use Systems in Lithuania," Land, MDPI, vol. 11(1), pages 1-17, January.
    4. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    5. Ying-Tzy Jou & Elmi Junita Tarigan & Cahyo Prayogo & Chesly Kit Kobua & Yu-Ting Weng & Yu-Min Wang, 2022. "Effects of Sphingobium yanoikuyae SJTF8 on Rice ( Oryza sativa ) Seed Germination and Root Development," Agriculture, MDPI, vol. 12(11), pages 1-15, November.
    6. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    7. Jiani Ma & Chao Zhang & Wenju Yun & Yahui Lv & Wanling Chen & Dehai Zhu, 2020. "The Temporal Analysis of Regional Cultivated Land Productivity with GPP Based on 2000–2018 MODIS Data," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    8. Grażyna Żukowska & Magdalena Myszura-Dymek & Szymon Roszkowski & Magdalena Olkiewicz, 2023. "Selected Properties of Soil-like Substrates Made from Mine Coal Waste and Their Effect on Plant Yields," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    9. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, vol. 10(9), pages 1-41, September.
    10. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    11. Sung Kyu Kim & Fiona Marshall & Neil M. Dawson, 2022. "Revisiting Rwanda’s agricultural intensification policy: benefits of embracing farmer heterogeneity and crop-livestock integration strategies," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(3), pages 637-656, June.
    12. Muhammad Faisal Saleem & Abdul Ghaffar & Muhammad Habib ur Rahman & Muhammad Imran & Rashid Iqbal & Walid Soufan & Subhan Danish & Rahul Datta & Karthika Rajendran & Ayman EL Sabagh, 2022. "Effect of Short-Term Zero Tillage and Legume Intercrops on Soil Quality, Agronomic and Physiological Aspects of Cotton under Arid Climate," Land, MDPI, vol. 11(2), pages 1-15, February.
    13. Tatiana Minnikova & Sergey Kolesnikov & Tatiana Minkina & Saglara Mandzhieva, 2021. "Assessment of Ecological Condition of Haplic Chernozem Calcic Contaminated with Petroleum Hydrocarbons during Application of Bioremediation Agents of Various Natures," Land, MDPI, vol. 10(2), pages 1-20, February.
    14. Ziauddin Safari & Sayed Tamim Rahimi & Kamal Ahmed & Ahmad Sharafati & Ghaith Falah Ziarh & Shamsuddin Shahid & Tarmizi Ismail & Nadhir Al-Ansari & Eun-Sung Chung & Xiaojun Wang, 2021. "Estimation of Spatial and Seasonal Variability of Soil Erosion in a Cold Arid River Basin in Hindu Kush Mountainous Region Using Remote Sensing," Sustainability, MDPI, vol. 13(3), pages 1-14, February.
    15. Jacek Pranagal & Sławomir Ligęza & Halina Smal & Joanna Gmitrowicz-Iwan, 2023. "Effects of Waste Application (Carboniferous Rock and Post-Fermentation Sludge) on Soil Quality," Land, MDPI, vol. 12(2), pages 1-20, February.
    16. Alberts Auzins & Ieva Leimane & Agnese Krievina & Inga Morozova & Andris Miglavs & Peteris Lakovskis, 2023. "Evaluation of Environmental and Economic Performance of Crop Production in Relation to Crop Rotation, Catch Crops, and Tillage," Agriculture, MDPI, vol. 13(8), pages 1-25, August.
    17. Erika María López-García & Edgardo Torres-Trejo & Lucia López-Reyes & Ángel David Flores-Domínguez & Ricardo Darío Peña-Moreno & Jesús Francisco López-Olguín, 2020. "Estimation of soil erosion using USLE and GIS in the locality of Tzicatlacoyan, Puebla, México," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 15(1), pages 9-17.
    18. Ajay Kumar & Sushil Kumar & Komal & Nirala Ramchiary & Pardeep Singh, 2021. "Role of Traditional Ethnobotanical Knowledge and Indigenous Communities in Achieving Sustainable Development Goals," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
    19. Anna Raschke & J. Sebastian Hernandez-Suarez & A. Pouyan Nejadhashemi & Kalyanmoy Deb, 2021. "Multidimensional Aspects of Sustainable Biofuel Feedstock Production," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    20. Monther M. Tahat & Kholoud M. Alananbeh & Yahia A. Othman & Daniel I. Leskovar, 2020. "Soil Health and Sustainable Agriculture," Sustainability, MDPI, vol. 12(12), pages 1-26, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:1:p:10-:d:304592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.