IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i8p1539-d1208723.html
   My bibliography  Save this article

Evaluation of Environmental and Economic Performance of Crop Production in Relation to Crop Rotation, Catch Crops, and Tillage

Author

Listed:
  • Alberts Auzins

    (Institute of Agricultural Resources and Economics, LV-1039 Riga, Latvia)

  • Ieva Leimane

    (Institute of Agricultural Resources and Economics, LV-1039 Riga, Latvia)

  • Agnese Krievina

    (Institute of Agricultural Resources and Economics, LV-1039 Riga, Latvia)

  • Inga Morozova

    (Institute of Agricultural Resources and Economics, LV-1039 Riga, Latvia)

  • Andris Miglavs

    (do Consult, Ltd., LV-1021 Riga, Latvia)

  • Peteris Lakovskis

    (Institute of Agricultural Resources and Economics, LV-1039 Riga, Latvia)

Abstract

Crop production constitutes a significant portion of the EU’s agricultural output and influences land use decisions. Various elements within the crop production system can significantly impact its outcomes. This paper aims to evaluate the environmental and economic performance of crop rotation, catch crops, and different tillage practices in Latvia by analyzing data from case studies, field trials, and field monitoring to identify the potential for improvement towards a more sustainable utilization of agricultural land. Environmental performance was evaluated by focusing on nitrogen use efficiency (NUE), as it is likely to play a significant role in assessing the environmental suitability of crop production according to the Platform on Sustainable Finance. For economic performance, gross margins were calculated. Crop rotation in Latvia tends to be monotonous, with wheat and oilseed rape dominating over 60% of the cultivated area due to their profitability. The findings of this study indicate that achieving a minimum NUE of 70% is challenging. Crop rotations including oilseed rape, particularly the common wheat–oilseed rape rotation, have an average NUE below the threshold, while proper use of catch crops may increase NUE by 7–9%. The three-year field trials on commercial farms yielded divergent findings about the impact of various tillage practices on NUE and gross margin. However, the field trials conducted on the farm practicing reduced tillage for over ten years show higher NUE compared to ploughing. The advantage of reduced tillage was supported by the obtained results indicating lower costs of agrotechnical operations, including less diesel consumption.

Suggested Citation

  • Alberts Auzins & Ieva Leimane & Agnese Krievina & Inga Morozova & Andris Miglavs & Peteris Lakovskis, 2023. "Evaluation of Environmental and Economic Performance of Crop Production in Relation to Crop Rotation, Catch Crops, and Tillage," Agriculture, MDPI, vol. 13(8), pages 1-25, August.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1539-:d:1208723
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/8/1539/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/8/1539/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stoorvogel, J. J. & Antle, J. M. & Crissman, C. C. & Bowen, W., 2004. "The tradeoff analysis model: integrated bio-physical and economic modeling of agricultural production systems," Agricultural Systems, Elsevier, vol. 80(1), pages 43-66, April.
    2. Vastola, Antonella & Zdruli, Pandi & D’Amico, Mario & Pappalardo, Gioacchino & Viccaro, Mauro & Di Napoli, Francesco & Cozzi, Mario & Romano, Severino, 2017. "A comparative multidimensional evaluation of conservation agriculture systems: A case study from a Mediterranean area of Southern Italy," Land Use Policy, Elsevier, vol. 68(C), pages 326-333.
    3. Matthias Böldt & Friedhelm Taube & Iris Vogeler & Thorsten Reinsch & Christof Kluß & Ralf Loges, 2021. "Evaluating Different Catch Crop Strategies for Closing the Nitrogen Cycle in Cropping Systems—Field Experiments and Modelling," Sustainability, MDPI, vol. 13(1), pages 1-22, January.
    4. Cameron M. Pittelkow & Xinqiang Liang & Bruce A. Linquist & Kees Jan van Groenigen & Juhwan Lee & Mark E. Lundy & Natasja van Gestel & Johan Six & Rodney T. Venterea & Chris van Kessel, 2015. "Productivity limits and potentials of the principles of conservation agriculture," Nature, Nature, vol. 517(7534), pages 365-368, January.
    5. Rattan Lal, 2015. "Restoring Soil Quality to Mitigate Soil Degradation," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jindřich Špička & Tomáš Vintr & Renata Aulová & Jana Macháčková, 2020. "Trade-off between the economic and environmental sustainability in Czech dual farm structure," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 66(6), pages 243-250.
    2. Subhradip Bhattacharjee & Amitava Panja & Moumita Panda & Subham Dutta & Susanta Dutta & Rakesh Kumar & Dinesh Kumar & Malu Ram Yadav & Tatiana Minkina & Valery P. Kalinitchenko & Rupesh Kumar Singh &, 2023. "How Did Research on Conservation Agriculture Evolve over the Years? A Bibliometric Analysis," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
    3. Ricci, G.F. & Jeong, J. & De Girolamo, A.M. & Gentile, F., 2020. "Effectiveness and feasibility of different management practices to reduce soil erosion in an agricultural watershed," Land Use Policy, Elsevier, vol. 90(C).
    4. Yubo Liao & Bangbang Zhang & Xiangbin Kong & Liangyou Wen & Dongheng Yao & Yuxuan Dang & Wenguang Chen, 2022. "A Cooperative-Dominated Model of Conservation Tillage to Mitigate Soil Degradation on Cultivated Land and Its Effectiveness Evaluation," Land, MDPI, vol. 11(8), pages 1-19, August.
    5. Michael Kuhwald & Wolfgang B. Hamer & Joachim Brunotte & Rainer Duttmann, 2020. "Soil Penetration Resistance after One-Time Inversion Tillage: A Spatio-Temporal Analysis at the Field Scale," Land, MDPI, vol. 9(12), pages 1-21, December.
    6. José Camilo Bedano & Anahí Domínguez, 2016. "Large-Scale Agricultural Management and Soil Meso- and Macrofauna Conservation in the Argentine Pampas," Sustainability, MDPI, vol. 8(7), pages 1-25, July.
    7. Ahmad A. Al-Ghamdi & Yilma Tadesse & Nuru Adgaba & Abdulaziz G. Alghamdi, 2021. "Soil Degradation and Restoration in Southwestern Saudi Arabia through Investigation of Soil Physiochemical Characteristics and Nutrient Status as Indicators," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    8. Amon-Armah, Frederick & Yiridoe, Emmanuel K. & Hebb, Dale & Jamieson, Rob, 2013. "Nitrogen abatement cost comparison for cropping systems under alternative management choices," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149915, Agricultural and Applied Economics Association.
    9. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2023. "Land Degradation–Desertification in Relation to Farming Practices in India: An Overview of Current Practices and Agro-Policy Perspectives," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    10. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    11. Carlos Moreno Miranda & Ra?l Moreno & Pablo Moreno, 2020. "Protected-Denomination-of-Origin Cocoa Bean: Chain governance and Sustainability Performance," Economia agro-alimentare, FrancoAngeli Editore, vol. 22(1), pages 1-24.
    12. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    13. Peipei Yang & Wenxu Dong & Marius Heinen & Wei Qin & Oene Oenema, 2022. "Soil Compaction Prevention, Amelioration and Alleviation Measures Are Effective in Mechanized and Smallholder Agriculture: A Meta-Analysis," Land, MDPI, vol. 11(5), pages 1-18, April.
    14. Grażyna Żukowska & Magdalena Myszura-Dymek & Szymon Roszkowski & Magdalena Olkiewicz, 2023. "Selected Properties of Soil-like Substrates Made from Mine Coal Waste and Their Effect on Plant Yields," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    15. Valdivia, Roberto O. & Antle, John M. & Stoorvogel, Jetse J., 2012. "Coupling the Tradeoff Analysis Model with a market equilibrium model to analyze economic and environmental outcomes of agricultural production systems," Agricultural Systems, Elsevier, vol. 110(C), pages 17-29.
    16. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, vol. 10(9), pages 1-41, September.
    17. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    18. Muhammad Faisal Saleem & Abdul Ghaffar & Muhammad Habib ur Rahman & Muhammad Imran & Rashid Iqbal & Walid Soufan & Subhan Danish & Rahul Datta & Karthika Rajendran & Ayman EL Sabagh, 2022. "Effect of Short-Term Zero Tillage and Legume Intercrops on Soil Quality, Agronomic and Physiological Aspects of Cotton under Arid Climate," Land, MDPI, vol. 11(2), pages 1-15, February.
    19. Wondimagegn Tesfaye & Garrick Blalock & Nyasha Tirivayi, 2021. "Climate‐Smart Innovations and Rural Poverty in Ethiopia: Exploring Impacts and Pathways," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 878-899, May.
    20. Jacek Pranagal & Sławomir Ligęza & Halina Smal & Joanna Gmitrowicz-Iwan, 2023. "Effects of Waste Application (Carboniferous Rock and Post-Fermentation Sludge) on Soil Quality," Land, MDPI, vol. 12(2), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1539-:d:1208723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.