IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v109y2021i3d10.1007_s11069-021-04916-1.html
   My bibliography  Save this article

A multifractal cross-correlation investigation into sensitivity and dependence of meteorological and hydrological droughts on precipitation and temperature

Author

Listed:
  • Farhang Rahmani

    (Islamic Azad University)

  • Mohammad Hadi Fattahi

    (Islamic Azad University)

Abstract

Several studies have been conducted on droughts, precipitation, and temperature, whereas none have addressed the underlying relationship between nonlinear dynamic properties and patterns of two main hydrological parameters, precipitation and temperature, and meteorological and hydrological droughts. Monthly datasets of Midlands in the UK between 1921 and 2019 were collected for analysis. Subsequent to apply a multifractal approach to attain the nonlinear features of the datasets, the relationship between two hydrological parameters and droughts was investigated through the cross-correlation technique. A similar process was performed to analyze the relationship between multifractal strength variations in time series of precipitation and temperature and droughts. The nonlinear dynamic results indicated that droughts (meteorological and hydrological) were substantially affected by precipitation than temperature. In other words, droughts were more sensitive to precipitation fluctuations than temperature fluctuations. Concerning temperature, meteorological, and hydrological droughts were dependent on the minimum and maximum temperatures ( $$T_{{{\text{min}}}}$$ T min and $$T_{{{\text{max}}}}$$ T max ), respectively. The correlation between precipitation and meteorological drought was more long-range persistence than precipitation and hydrological drought. Besides, the correlation between $$T_{{{\text{max}}}}$$ T max and droughts was more long-range persistence than $$T_{{{\text{min}}}}$$ T min and droughts. Analysis of nonlinear dynamic patterns proved that the multifractal strength of meteorological drought depended on the multifractal strength of precipitation and $$T_{{{\text{max}}}}$$ T max , whereas the multifractal strength of hydrological drought depended on the multifractal strength of the $$T_{{{\text{min}}}}$$ T min . The correlation between precipitation and drought indices exhibited more multifractal strength than temperature and drought indices. Finally, the pivotal role of maximum temperature on drought events was quite alerting due to global warming intensification.

Suggested Citation

  • Farhang Rahmani & Mohammad Hadi Fattahi, 2021. "A multifractal cross-correlation investigation into sensitivity and dependence of meteorological and hydrological droughts on precipitation and temperature," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2197-2219, December.
  • Handle: RePEc:spr:nathaz:v:109:y:2021:i:3:d:10.1007_s11069-021-04916-1
    DOI: 10.1007/s11069-021-04916-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04916-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04916-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Guangxi & Shi, Yingying, 2017. "Simulation analysis of multifractal detrended methods based on the ARFIMA process," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 235-243.
    2. Zou, Shaohui & Zhang, Tian, 2020. "Multifractal detrended cross-correlation analysis of the relation between price and volume in European carbon futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    3. da Silva, Hérica Santos & Silva, José Rodrigo Santos & Stosic, Tatijana, 2020. "Multifractal analysis of air temperature in Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    4. Sun, Xia & Chen, Huiping & Yuan, Yongzhuang & Wu, Ziqin, 2001. "Predictability of multifractal analysis of Hang Seng stock index in Hong Kong," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 301(1), pages 473-482.
    5. Wang, Bangcan & Wei, Yu & Xing, Yuhui & Ding, Wenjiao, 2019. "Multifractal detrended cross-correlation analysis and frequency dynamics of connectedness for energy futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    6. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    7. Hasan Tatli & H. Nüzhet Dalfes, 2020. "Long-Time Memory in Drought via Detrended Fluctuation Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1199-1212, February.
    8. Wei-Xing Zhou, 2008. "Multifractal detrended cross-correlation analysis for two nonstationary signals," Papers 0803.2773, arXiv.org.
    9. Manimaran, P. & Narayana, A.C., 2018. "Multifractal detrended cross-correlation analysis on air pollutants of University of Hyderabad Campus, India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 228-235.
    10. Anurag Malik & Anil Kumar & Rajesh P. Singh, 2019. "Application of Heuristic Approaches for Prediction of Hydrological Drought Using Multi-scalar Streamflow Drought Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3985-4006, September.
    11. Sun, Xia & Chen, Huiping & Wu, Ziqin & Yuan, Yongzhuang, 2001. "Multifractal analysis of Hang Seng index in Hong Kong stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 291(1), pages 553-562.
    12. Morales Martínez, Jorge Luis & Segovia-Domínguez, Ignacio & Rodríguez, Israel Quiros & Horta-Rangel, Francisco Antonio & Sosa-Gómez, Guillermo, 2021. "A modified Multifractal Detrended Fluctuation Analysis (MFDFA) approach for multifractal analysis of precipitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    13. Samuel Lyerly, 1952. "The average spearman rank correlation coefficient," Psychometrika, Springer;The Psychometric Society, vol. 17(4), pages 421-428, December.
    14. Laura Raisa Miloş & Cornel Haţiegan & Marius Cristian Miloş & Flavia Mirela Barna & Claudiu Boțoc, 2020. "Multifractal Detrended Fluctuation Analysis (MF-DFA) of Stock Market Indexes. Empirical Evidence from Seven Central and Eastern European Markets," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    15. Chatterjee, Sucharita & Ghosh, Dipak, 2021. "Impact of Global Warming on SENSEX fluctuations — A study based on Multifractal detrended cross correlation analysis between the temperature anomalies and the SENSEX fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    16. I. Nalbantis & G. Tsakiris, 2009. "Assessment of Hydrological Drought Revisited," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 881-897, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qianchuan Mi & Chuanyou Ren & Yanhua Wang & Xining Gao & Limin Liu & Yue Li, 2023. "A robust ensemble drought index: construction and assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1139-1159, March.
    2. Fernandes, Leonardo H.S. & Silva, José W.L. & de Araujo, Fernando H.A., 2022. "Multifractal risk measures by Macroeconophysics perspective: The case of Brazilian inflation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Fernandes, Leonardo H.S. & Silva, José W.L. & de Araujo, Fernando H.A. & Ferreira, Paulo & Aslam, Faheem & Tabak, Benjamin Miranda, 2022. "Interplay multifractal dynamics among metal commodities and US-EPU," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    4. Zhan, Cun & Liang, Chuan & Zhao, Lu & Jiang, Shouzheng & Niu, Kaijie & Zhang, Yaling, 2023. "Multifractal characteristics of multiscale drought in the Yellow River Basin, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    2. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2011. "A copula–multifractal volatility hedging model for CSI 300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4260-4272.
    3. Nurulkamal Masseran, 2022. "Multifractal Characteristics on Temporal Maximum of Air Pollution Series," Mathematics, MDPI, vol. 10(20), pages 1-15, October.
    4. Wang, Qizhen & Zhu, Yingming & Yang, Liansheng & Mul, Remco A.H., 2017. "Coupling detrended fluctuation analysis of Asian stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 337-350.
    5. Liu, Hongzhi & Zhang, Xingchen & Zhang, Xie, 2020. "Multiscale multifractal analysis on air traffic flow time series: A single airport departure flight case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. Milena Kojić & Petar Mitić & Marko Dimovski & Jelena Minović, 2021. "Multivariate Multifractal Detrending Moving Average Analysis of Air Pollutants," Mathematics, MDPI, vol. 9(7), pages 1-17, March.
    7. Meo, Marcos M. & Iaconis, Francisco R. & Del Punta, Jessica A. & Delrieux, Claudio A. & Gasaneo, Gustavo, 2024. "Multifractal information on reading eye tracking data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    8. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractal analysis of Chinese stock volatilities based on the partition function approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(19), pages 4881-4888.
    9. Wang, Yi & Sun, Qi & Zhang, Zilu & Chen, Liqing, 2022. "A risk measure of the stock market that is based on multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    10. Liu, Zhicao & Ye, Yong & Ma, Feng & Liu, Jing, 2017. "Can economic policy uncertainty help to forecast the volatility: A multifractal perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 181-188.
    11. Wang, Yilin & Zhang, Zeming & Li, Xiafei & Chen, Xiaodan & Wei, Yu, 2020. "Dynamic return connectedness across global commodity futures markets: Evidence from time and frequency domains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    12. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractality in stock indexes: Fact or Fiction?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3605-3614.
    13. Sierra-Porta, D., 2024. "A multifractal approach to understanding Forbush Decrease events: Correlations with geomagnetic storms and space weather phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    14. Du, Guoxiong & Ning, Xuanxi, 2008. "Multifractal properties of Chinese stock market in Shanghai," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 261-269.
    15. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2007. "Scale invariant distribution and multifractality of volatility multipliers in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 343-350.
    16. Liu, Zhichao & Ma, Feng & Long, Yujia, 2015. "High and low or close to close prices? Evidence from the multifractal volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 50-61.
    17. Zunino, L. & Tabak, B.M. & Figliola, A. & Pérez, D.G. & Garavaglia, M. & Rosso, O.A., 2008. "A multifractal approach for stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6558-6566.
    18. Yuan, Ying & Zhuang, Xin-tian & Jin, Xiu, 2009. "Measuring multifractality of stock price fluctuation using multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2189-2197.
    19. Wang, Jian & Huang, Menghao & Wu, Xinpei & Kim, Junseok, 2023. "A local fitting based multifractal detrend fluctuation analysis method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    20. Fernandes, Leonardo H.S. & Silva, José W.L. & de Araujo, Fernando H.A. & Tabak, Benjamin M., 2023. "Multifractal cross-correlations between green bonds and financial assets," Finance Research Letters, Elsevier, vol. 53(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:109:y:2021:i:3:d:10.1007_s11069-021-04916-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.